Substrate-Integrated Millimeter-Wave Antennas for Next-Generation Communication and Radar Systems
Petty, K.R. and Mahoney, W.P. III (2007). Weather applications and products enabled through vehicle infrastructure integration (VII). (Section 5) United States Department of Transportation – Federal Highway Administration Report No. FHWA‐HOP‐07‐084. https://ops.fhwa.dot.gov/publications/viirpt/viirpt.pdf (accessed 19 December 2020).
4 4 Shannon, C.E. (1949). Communication in the presence of noise. Proc. Inst. Rad. Eng. 37 (1): 10–21.
5 5 Wiltse, J.C. (1984). History of millimeter and submillimeter waves. IEEE Trans. Microwave Theory Tech. 32 (9): 1118–1127.
6 6 Nichols, E.F. and Tear, J.D. (1923). Short electric waves. Phys. Rev. 21: 587–610.
7 7 Nichols, E.F. and Tear, J.D. (1923). Joining the infra‐red and electric wave spectra. Proc. Nat. Acad. Sci. 9: 211–214.
8 8 Tear, J.D. (1923). The optical constants of certain liquids for short electric waves. Phys. Rev. 21: 611–622.
9 9 Cleeton, C.E. and Williams, N.H. (1934). Electromagnetic waves of 1.1cm wave‐length and the absorption spectrum of ammonia. Phys. Rev. 45: 234–237.
10 10 Boot, H.A.H. and Randall, J.T. (1976). Historical notes on the cavity magnetron. IEEE Trans. Electron Dev. 23: 724–729.
11 11 Bennger, R. (1946). The absorption of one‐half centimeter electromagnetic waves in oxygen. Phys. Rev. 70: 53–57.
12 12 Warters, W.D. (1977). WT4 millimeter waveguide system: introduction. Bell Syst. Tech. J. 56: 1925–1928.
13 13 Button, K.J. and Wiltse, J.C. (eds.) (1981). Millimeter Systems, vol. 4, (series on Infrared and Millimeter Waves). NY: Academic.
14 14 Schwartz, R.F. (1954). Bibliography on directional couplers. IRE Trans. Microwave Theory Tech. 2: 58–63.
15 15 Convert, G., Yeou, T., and Pasty, B. (1959). Millimeter‐wave O‐carcinotron. In: Proceedings of Symposium on Millimeter Waves, vol. IX, 313–339.
16 16 Wiltse, J.C. (1959). Some characteristics of dielectric image lines at millimeter wavelengths. IRE Trans. 7: 63–69.
17 17 Taub, J.J., Hindin, H.J., Hinckelmann, O.F., and Wright, M.L. (1963). Submillimeter components using oversize quasi‐optical waveguide. IEEE Trans. Microwave Theory Tech. 11 (9): 338–345.
18 18 Richer, K.A. (1974). Near earth millimeter‐wave radar and radiometry. Proc. IEEE Int. Symp. Microw. Theorv Tech.: 470–474.
19 19 Wiltse, J.C. (1979). Millimeter wave technology and applications. Microw. J. 22: 39–42.
20 20 Chang, K. and Sun, C. (1983). Millimeter‐wave power‐combining techniques. IEEE Trans. Microwave Theory Tech. 31 (2): 91–107.
21 21 Chen, Z.N. (ed.) (2016). Handbook of Antenna Technologies. Springer.
22 22 Balanis, C.A. (2016). Antenna Theory: Analysis and Design, 4e. Wiley.
23 23 Uchimura, H., Takenoshita, T., and Fujii, M. (1998). Development of a “laminated waveguide”. IEEE Trans. Microwave Theory Tech. 46 (12): 2438–2443.
24 24 Takenoshita, T. and Uchimura, H. (1999). Laminated aperture antenna and multilayered wiring board comprising the same. EP20030026894 (Application number in 1998) and EP0893842B1(Grant number in 2004). https://patentimages.storage.googleapis.com/74/5e/eb/c2c2e031af31c7/EP0893842A2.pdf (accessed 19 December 2020).
25 25 Hirokawa, J. and Ando, M. (1998). Single‐layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Trans. Antennas Propag. 46 (5): 625–630.
26 26 Deslandes, D. and Wu, K. (2001). Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave Wirel. Compon. Lett. 11 (2): 68–70.
27 27 Yan, L., Hong, W., Hua, G. et al. (2004). Simulation and experiment on SIW slot array antennas. IEEE Microwave Wirel. Compon. Lett. 14 (9): 446–448.
28 28 Sebastian, M.T., Ubic, R., and Jantunen, H. (eds.) (2017). Microwave Materials and Applications. Wiley.
29 29 Sebastian, M. and Jantunen, H. (2008). Low loss dielectric materials for LTCC applications. Int. Mat. Rev. 53 (2): 57–90.
30 30 Ullah, U., Ain, M.F., Mahyuddin, N.M. et al. (2015). Antenna in LTCC technologies: a review and the current state of the art. IEEE Antennas Propag. Mag. 57 (2): 241–260.
31 31 Deslandes, D. and Wu, K. (2006). Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Trans. Microwave Theory Tech. 54 (6): 2516–2526.
32 32 She, Y., Tran, T.H., Hashimoto, K. et al. (2011). Loss of post‐wall waveguides and efficiency estimation of parallel‐plate slot arrays fed by the post‐wall waveguide in the millimeter‐wave band. IEICE Trans. Electron. E94‐C (3): 312–320.
33 33 Gatti, F., Bozzi, M., Perregrini, L. et al. (2006). A novel substrate integrated coaxial line (SICL) for wideband applications. In: Proceedings of the 36th European Microwave Conference, 1614–1617.
34 34 Shao, Y., Li, X.‐C., Wu, L.‐S., and Mao, J.‐F. (2017). A wideband millimeter‐wave substrate integrated coaxial line array for high‐speed data transmission. IEEE Trans. Microwave Theory Tech. 65 (8): 2789–2800.
35 35 Zhu, F., Hong, W., Chen, J.‐X., and Wu, K. (2012). Ultra‐wideband single and dual baluns based on substrate integrated coaxial line technology. IEEE Trans. Microwave Theory Tech. 60 (10): 3062–3070.
36 36 Yang, T.Y., Hong, W., and Zhang, Y. (2016). An SICL‐excited wideband circularly polarized cavity‐backed patch antenna for IEEE 802.11aj (45 GHz) applications. IEEE Antennas Wirel. Propag. Lett. 15: 1265–1268.
37 37 Liu, B., Xing, K.J., Wu, L. et al. (2017). A novel slot array antenna with substrate integrated coaxial line technique. IEEE Antennas Wirel. Propag. Lett. 16: 1743–1746.
38 38 Miao, Z.‐W. and Hao, Z.‐C. (2017). A wideband reflectarray antenna using substrate integrated coaxial true‐time delay lines for QLink‐pan applications. IEEE Antennas Wirel. Propag. Lett. 16: 2582–2585.
39 39 Xing, K., Liu, B., Guo, Z. et al. (2017). Backlobe and sidelobe suppression of a Q‐band patch antenna array by using substrate integrated coaxial line feeding technique. IEEE Antennas Wirel. Propag. Lett. 16: 3043–3046.
40 40 Liang, W. and Hong, W. (2012). Substrate integrated coaxial line 3 dB coupler. IET Electron. Lett. 48 (1): 35–36.
41 41 Chu, P. et al. (2014). Wide stopband bandpass filter implemented with spur stepped impedance resonator and substrate integrated coaxial line technology. IEEE Microwave Wirel. Compon. Lett. 24 (4): 218–220.
42 42 Zhang, J., Zhang, X., and Shen, D. (2016). Design of substrate integrated gap waveguide. IEEE MTT‐S Int. Microwave Symp. Dig.: 1–4.
43 43 Zhang, J., Zhang, X., Shen, D., and Kishk, A.A. (2017). Packaged microstrip line: a new quasi‐TEM line for microwave and millimeter‐wave applications. IEEE Trans. Microwave Theory Tech. 65 (3): 707–718.
44 44 Cao, B., Wang, H., Huang, Y., and Zheng, J. (2015). High‐gain L‐probe excited substrate integrated cavity antenna array with LTCC‐based gap waveguide feeding network for W‐band application. IEEE Trans. Antennas Propag. 63 (12): 5465–5474.
45 45 Cao, B., Wang, H., and Huang, Y. (2016). W‐band high‐gain TE220 ‐mode slot antenna array with gap waveguide feeding network. IEEE Antennas Wirel. Propag. Lett. 15: 988–991.
46 46 Dadgarpour, A., Sorkherizi, M.S., and Kishk, A.A. (2016). Wideband low‐loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding. IEEE Trans. Antennas Propag. 64 (12): 5094–5101.
47 47 Sorkherizi, M.S., Dadgarpour, A., and Kishk, A.A. (2017). Planar high‐efficiency antenna array using new printed ridge gap waveguide technology. IEEE Trans. Antennas Propag. 65 (7): 3772–3776.
48 48