Группа авторов

Solar-to-Chemical Conversion


Скачать книгу

V., Neese, F., and Pantazis, D.A. (2015). Isr. J. Chem. 55: 1219–1232.

      200 200 Jaszewski, A.R., Petrie, S., Pace, R.J., and Stranger, R. (2011). Chem. Eur. J. 17: 5699–5713.

      201 201 Pace, R.J., Jin, L., and Stranger, R. (2012). Dalton Trans. 41: 11145–11160.

      202 202 Chen, H., Case, D.A., and Dismukes, G.C. (2018). J. Phys. Chem. B.

      203 203 Chen, H., Dismukes, G.C., and Case, D.A. (2018). J. Phys. Chem. B 122: 8654–8664.

      204 204 Terrett, R., Petrie, S., Stranger, R., and Pace, R.J. (2016). J. Inorg. Biochem. 162: 178–189.

      205 205 Petrie, S., Stranger, R., and Pace, R.J. (2018). ChemPhysChem 19: 3296–3309.

      206 206 Åhrling, K.A., Peterson, S., and Styring, S. (1997). Biochemistry 36: 13148–13152.

      207 207 Messinger, J., Nugent, J.H.A., and Evans, M.C.W. (1997). Biochemistry 36: 11055–11060.

      208 208 Messinger, J., Robblee, J.H., Yu, W.O. et al. (1997). J. Am. Chem. Soc. 119: 11349–11350.

      209 209 Åhrling, K.A., Peterson, S., and Styring, S. (1998). Biochemistry 37: 8115–8120.

      210 210 Boussac, A., Kuhl, H., Ghibaudi, E. et al. (1999). Biochemistry 38: 11942–11948.

      211 211 Deák, Z., Peterson, S., Geijer, P. et al. (1999). Biochim. Biophys. Acta, Bioenerg. 1412: 240–249.

      212 212 Koulougliotis, D., Hirsh, D.J., and Brudvig, G.W. (1992). J. Am. Chem. Soc. 114: 8322–8323.

      213 213 Dexheimer, S.L. and Klein, M.P. (1992). J. Am. Chem. Soc. 114: 2821–2826.

      214 214 Yamauchi, T., Mino, H., Matsukawa, T. et al. (1997). Biochemistry 36: 7520–7526.

      215 215 Campbell, K.A., Peloquin, J.M., Pham, D.P. et al. (1998). J. Am. Chem. Soc. 120: 447–448.

      216 216 Campbell, K.A., Gregor, W., Pham, D.P. et al. (1998). Biochemistry 37: 5039–5045.

      217 217 Matsukawa, T., Kawamori, A., and Mino, H. (1999). Spectrochim. Acta, Part A 55: 895–901.

      218 218 Casey, J.L. and Sauer, K. (1984). Biochim. Biophys. Acta, Bioenerg. 767: 21–28.

      219 219 De Paula, J.C. and Brudvig, G.W. (1985). J. Am. Chem. Soc. 107: 2643–2648.

      220 220 Zimmermann, J.L. and Rutherford, A.W. (1984). Biochim. Biophys. Acta, Bioenerg. 767: 160–167.

      221 221 Zimmermann, J.L. and Rutherford, A.W. (1986). Biochemistry 25: 4609–4615.

      222 222 Cole, J., Yachandra, V.K., Guiles, R.D. et al. (1987). Biochim. Biophys. Acta, Bioenerg. 890: 395–398.

      223 223 Kim, D.H., Britt, R.D., Klein, M.P., and Sauer, K. (1990). J. Am. Chem. Soc. 112: 9389–9391.

      224 224 Horner, O., Rivière, E., Blondin, G. et al. (1998). J. Am. Chem. Soc. 120: 7924–7928.

      225 225 Boussac, A. and Rutherford, A.W. (2000). Biochim. Biophys. Acta, Bioenerg. 1457: 145–156.

      226 226 Sanakis, Y., Sarrou, J., Zahariou, G., and Petrouleas, V. (2008). Photosynthesis: Energy from the Sun (eds. J.F. Allen, E. Gantt, J.H. Golbeck and B. Osmond), 479–482. Dordrecht: Springer.

      227 227 Boussac, A., Sugiura, M., Rutherford, A.W., and Dorlet, P. (2009). J. Am. Chem. Soc. 131: 5050–5051.

      228 228 Cox, N., Retegan, M., Neese, F. et al. (2014). Science 345: 804–808.

      229 229 Peloquin, J.M. and Britt, R.D. (2001). Biochim. Biophys. Acta, Bioenerg. 1503: 96–111.

      230 230 Kulik, L.V., Epel, B., Lubitz, W., and Messinger, J. (2007). J. Am. Chem. Soc. 129: 13421–13435.

      231 231 Charlot, M.‐F., Boussac, A., and Blondin, G. (2005). Biochim. Biophys. Acta, Bioenerg. 1708: 120–132.

      232 232 Kulik, L.V., Epel, B., Lubitz, W., and Messinger, J. (2005). J. Am. Chem. Soc. 127: 2392–2393.

      233 233 Iuzzolino, L., Dittmer, J., Dörner, W. et al. (1998). Biochemistry 37: 17112–17119.

      234 234 Dau, H., Iuzzolino, L., and Dittmer, J. (2001). Biochim. Biophys. Acta, Bioenerg. 1503: 24–39.

      235 235 Dau, H., Liebisch, P., and Haumann, M. (2005). Phys. Scr. 2005: 844.

      236 236 Cheah, M.H., Zhang, M., Shevela, D. et al. (2020). Proc. Natl. Acad. Sci. U.S.A. 117: 141–145.

      237 237 Paul, S., Cox, N., and Pantazis, D.A. (2017). Inorg. Chem. 56: 3875–3888.

      238 238 Nakamura, S. and Noguchi, T. (2016). Proc. Natl. Acad. Sci. U.S.A. 113: 12727–12732.

      239 239 Kusunoki, M. (2011). Photochem. Photobiol. B 104: 100–110.

      240 240 Shoji, M., Isobe, H., Tanaka, A. et al. (2018). ChemPhotoChem 2: 257–270.

      241 241 Narzi, D., Mattioli, G., Bovi, D., and Guidoni, L. (2017). Chem. Eur. J. 23: 6969–6973.

      242 242 Boussac, A., Rutherford, A.W., and Sugiura, M. (2015). Biochim. Biophys. Acta, Bioenerg. 1847: 576–586.

      243 243 Nugent, J.H.A., Muhiuddin, I.P., and Evans, M.C.W. (2002). Biochemistry 41: 4117–4126.

      244 244 Koulougliotis, D., Shen, J.‐R., Ioannidis, N., and Petrouleas, V. (2003). Biochemistry 42: 3045–3053.

      245 245 Koulougliotis, D., Teutloff, C., Sanakis, Y. et al. (2004). Phys. Chem. Chem. Phys. 6: 4859–4863.

      246 246 Sioros, G., Koulougliotis, D., Karapanagos, G., and Petrouleas, V. (2007). Biochemistry 46: 210–217.

      247 247 Pal, R., Negre, C.F.A., Vogt, L. et al. (2013). Biochemistry 52: 7703–7706.

      248 248 Lohmiller, T., Krewald, V., Sedoud, A. et al. (2017). J. Am. Chem. Soc. 139: 14412–14424.

      249 249 Saito, K., William Rutherford, A., and Ishikita, H. (2015). Nat. Commun. 6: 8488.

      250 250 Bovi, D., Narzi, D., and Guidoni, L. (2013). Angew. Chem. Int. Ed. 52: 11744–11749.

      251 251 Isobe, H., Shoji, M., Yamanaka, S. et al. (2012). Dalton Trans. 41: 13727–13740.

      252 252 Vinyard, D.J., Khan, S., Askerka, M. et al. (2017). J. Phys. Chem. B 121: 1020–1025.

      253 253 Corry, T.A. and O'Malley, P.J. (2019). J. Phys. Chem. Lett. 10: 5226–5230.

      254 254 Pushkar, Y., Ravari, A.K., Jensen, S.C., and Palenik, M. (2019). J. Phys. Chem. Lett. 10: 5284–5291.

      255 255 Pantazis, D.A. (2019). Inorganics 7: 55.

      256 256 Narzi, D., Bovi, D., and Guidoni, L. (2014). Proc. Natl. Acad. Sci. U.S.A. 111: 8723–8728.

      257 257 Retegan, M., Cox, N., Lubitz, W. et al. (2014). Phys. Chem. Chem. Phys. 16: 11901–11910.

      258 258 Ishikita, H., Saenger, W., Loll, B. et al. (2006). Biochemistry 45: 2063–2071.

      259 259 Debus, R.J. (2014). Biochemistry 53: 2941–2955.

      260 260 Dilbeck, P.L., Hwang, H.J., Zaharieva, I. et al. (2012). Biochemistry 51: 1079–1091.

      261 261 Gupta, R., Taguchi, T., Lassalle‐Kaiser, B. et al. (2015). Proc. Natl. Acad. Sci. U.S.A. 112: 5319–5324.

      262 262 Boussac, A., Sugiura, M., Kirilovsky, D., and Rutherford, A.W. (2005). Plant Cell Physiol. 46: 837–842.

      263 263 Su, J.‐H., Havelius, K.G.V., Ho, F.M. et al. (2007). Biochemistry 46: 10703–10712.

      264 264 Ioannidis, N., Nugent, J.H.A., and Petrouleas, V. (2002). Biochemistry 41: 9589–9600.

      265 265 Rappaport, F., Ishida, N., Sugiura, M., and Boussac, A. (2011). Energy Environ. Sci. 4: 2520–2524.

      266 266 Capone, M., Narzi, D., Bovi, D., and Guidoni, L. (2016). J. Phys. Chem. Lett. 7: 592–596.

      267 267 Pérez Navarro, M., Ames, W.M., Nilsson, H. et al. (2013). Proc. Natl. Acad. Sci. U.S.A. 110: 15561–15566.

      268 268 Oyala, P.H., Stich, T.A., Debus, R.J., and Britt, R.D. (2015). J. Am. Chem. Soc. 137: