Людвиг фон Мизес

Human Action


Скачать книгу

100 dollars and will have to pay the same amount to one of the ten. But if he were to insure one only of them at a rate fixed by the calculus, he would embark not upon an insurance business, but upon gambling. He would substitute himself for the insured. He would collect ten dollars and would get the chance either of keeping it or of losing that ten dollars and ninety dollars more.

      If a man promises to pay at the death of another man a definite sum and charges for this promise the amount adequate to the life expectancy as determined by the calculus of probability, he is not an insurer but a gambler. Insurance, whether conducted according to business principles or according to the principle of mutuality, requires the insurance of a whole class or what can reasonably be considered as such. Its basic idea is pooling and distribution of risks, not the calculus of probability. The mathematical operation that it requires are the four elementary operations of arithmetic. The calculus of probability is mere by-play.

      This is clearly evidenced by the fact that the elimination of hazardous risk by pooling can also be effected without any recourse to actuarial methods. Everybody practices it in his daily life. Every businessman includes in his normal cost accounting the compensation for losses which regularly occur in the conduct of affairs. “Regularly” means in this context: The amount of these losses is known as far as the whole class of the various items is concerned. The fruit dealer may know, for instance, that one of every fifty apples will rot in this stock; but he does not know to which individual apple this will happen. He deals with such losses as with any other item in the bill of costs.

      The definition of the essence of class probability as given above is the only logically satisfactory one. It avoids the crude circularity implied in all definitions referring to the equiprobability of possible events. In stating that we know nothing about actual singular events except that they are elements of a class the behavior of which is fully known, this vicious circle is disposed of. Moreover, it is superfluous to add a further condition called the absence of any regularity in the sequence of the singular events.

      The characteristic mark of insurance is that it deals with the whole class of events. As we pretend to know everything about the behavior of the whole class, there seems to be no specific risk involved in the conduct of the business.

      Neither is there any specific risk in the business of the keeper of a gambling bank or in the enterprise of a lottery. From the point of view of the lottery enterprise the outcome is predictable, provided that all tickets have been sold. If some tickets remain unsold, the enterpriser is in the same position with regard to them as every buyer of a ticket is with regard to the tickets he bought.

      Case probability means: We know, with regard to a particular event, some of the factors which determine its outcome; but there are other determining factors about which we know nothing.

      Case probability has nothing in common with class probability but the incompleteness of our knowledge. In every other regard the two are entirely different.

      There are, of course, many instances in which men try to forecast a particular future event on the basis of their knowledge about the behavior of the class. A doctor may determine the chances for the full recovery of his patient if he knows that 70 per cent of those afflicted with the same disease recover. If he expresses his judgment correctly, he will not say more than that the probability of recovery is 0.7, that is, that out of ten patients not more than three on the average die. All such predictions about external events, i.e., events in the field of the natural sciences, are of this character. They are in fact not forecasts about the issue of the case in question, but statements about the frequency of the various possible outcomes. They are based either on statistical information or simply on the rough estimate of the frequency derived from nonstatistical experience.

      So far as such types of probable statements are concerned, we are not faced with case probability. In fact we do not know anything about the case in question except that it is an instance of a class the behavior of which we know or think we know.

      A surgeon tells a patient who considers submitting himself to an operation that thirty out of every hundred undergoing such an operation die. If the patient asks whether this number of deaths is already full, he has misunderstood the sense of the doctor’s statement. He has fallen prey to the error known as the “gambler’s fallacy.” Like the roulette player who concludes from a run of ten red in succession that the probability of the next turn being black is now greater than it was before the run, he confuses case probability with class probability.

      All medical prognoses, when based only on general physiological knowledge, deal with class probability. A doctor who hears that a man he does not know has been seized by a definite illness will, on the basis of his general medical experience, say: His chances for recovery are 7 to 3. If the doctor himself treats the patient, he may have a different opinion. The patient is a young, vigorous man; he was in good health before he was taken with the illness. In such cases, the doctor may think, the mortality figures are lower; the chances for this patient are not 7:3, but 9:1. The logical approach remains the same, although it may be based not on a collection of statistical data, but simply on a more or less exact résumé of the doctor’s own experience with previous cases. What the doctor knows is always only the behavior of classes. In our instance the class is the class of young, vigorous men seized by the illness in question.

      Case probability is a particular feature of our dealing with problems of human action. Here any reference to frequency is inappropriate, as our statements always deal with unique events which as such—i.e., with regard to the problem in question—are not members of any class. We can form a class “American presidential elections.” This class concept may prove useful or even necessary for various kinds of reasoning, as, for instance, for a treatment of the matter from the viewpoint of constitutional law. But if we are dealing with the election of 1944—either, before the election, with its future outcome or, after the election, with an analysis of the factors which determined the outcome—we are grappling with an individual, unique, and nonrepeatable case. The case is characterized by its unique merits, it is a class by itself. All the marks which make it permissible to subsume it under any class are irrelevant for the problem in question.

      Two football teams, the Blues and the Yellows, will play tomorrow. In the past the Blues have always defeated the Yellows. This knowledge is not knowledge about a class of events. If we were to consider it as such, we would have to conclude that the Blues are always victorious and that the Yellows are always defeated. We would not be uncertain with regard to the outcome of the game. We would know for certain that the Blues will win again. The mere fact that we consider our forecast about tomorrow’s game as only probable shows that we do not argue this way.

      On the other hand, we believe that the fact that the Blues were victorious in the past is not immaterial with regard to the outcome of tomorrow’s game. We consider it as a favorable prognosis for the repeated success of the Blues. If we were to argue correctly according to the reasoning appropriate to class probability, we would not attach any importance to this fact. If we were not to resist the erroneous conclusion of the “gambler’s fallacy,” we would, on the contrary, argue that tomorrow’s game will result in the success of the Yellows.

      If we risk some money on the chance of one team’s victory, the lawyers would qualify our action as a bet. They would call it gambling if class probability were involved.

      Everything that outside the field of class probability is commonly implied in the term probability refers to the peculiar mode of reasoning involved in dealing with historical uniqueness or individuality, the specific understanding of the historical sciences.

      Understanding is always based on incomplete knowledge. We may believe we know the motives of the acting men, the ends they are aiming at, and the means they plan to apply for the attainment of these ends. We have a definite opinion with regard to the effects to be expected from the operation of these factors. But this knowledge is defective. We cannot exclude beforehand the possibility that we have erred in the appraisal of their influence or have failed to take into consideration some factors whose interference we did not foresee at all, or not in a correct way.

      Gambling,