Nikolaos Limnios

Queueing Theory 2


Скачать книгу

      For the system S, we define an auxiliary system S0 with input flow X0 such that when the number of customers in the system becomes less than m a new customer immediately arrives in the system. Therefore, there are always customers for service in S0. Other characteristics such as the initial state, the sequence

stochastic process
and a functional Φ are the same as for the system S. If in the system S the initial number of customers Q (0) < m, then the process X0 has the jump m – Q(0) at zero instant. We determine an auxiliary service process Y(t) as the number of customers served in S0 during (0, t). Since the flow Y is defined by the processes
and V and these processes do not depend on the input flow X at the system S, we conclude that X and Y are independent flows.

      We also need additional assumptions.

      CONDITION 1.1.– For the continuous-time case, Y is a strongly regenerative flow with the sequence

as points of regeneration.

      We call the regenerative flow Y strongly regenerative if the regeneration period

has the form

      [1.2]

      where

are independent random variables and

      Then we may determine common points of regeneration

for both processes X and Y letting in the discrete-time case

      and in the continuous-time case

      LEMMA 1.1.– Let for the continuous-time (discrete-time) condition 1.1 (condition 1.2) be fulfilled. Then the sequence

consists of common regeneration points for X and Y and

      for the continuous-time case,

      for the discrete-time case.

Then
is a sequence of iid random variables and in accordance with Wald’s identity
(Feller 1971). Therefore, we need to prove the finiteness of Eν1. Denote by h2(t) (h(t)) the mean number of renewals at time t for the renewal process
so that

      and

      Taking into account condition 1.2, we derive from Blackwell’s theorem (Thorisson 2000)

      Because of X and Y independence

      Since

w.p.1, then
w.p.1. Therefore, from Lebesgue s dominated convergence theorem, we obtain

      Later we consider both cases (discrete-time and continuous-time) together. We only have to take condition 1.2 instead of condition 1.1.

      Let

      Then

      We think of λX and λγ as the arrival and service rate, respectively. Intuitively, it is clear that the number of customers in the system S is a stochastically bounded process if ρ < 1 and it is not the case if ρ ≥ 1. The main stability result of this chapter consists of the formal proof of this fact.

      We define the stochastic flow

as the number of customers served at the system S during time interval [0, t).

      CONDITION 1.3.– The following stochastic inequalities take place:

      Let Q(t) be the number of customers in the system S including the customers on the servers at time t so that

      CONDITION 1.4.– There are