Группа авторов

The Handbook of Language and Speech Disorders


Скачать книгу

A meta‐analysis. Journal of Deaf Studies and Deaf Education, 21(2), 107–121.

      48 Lyxell, B., Wass, M., Sahlen, B., Samuelsson, C., Asker‐Arnason, L., Ibertsson, T., … Hallgren, M. (2009). Cognitive development, reading and prosodic skills in children with cochlear implants. Scandinavian Journal of Psychology, 50(5), 463–474.

      49 Mancini, P., Giallini, I., Prosperini, L., D'Alessandro, H. D., Guerzoni, L., Murri, A., … Nicastri, M. (2016). Level of emotion comprehension in children with mid to long term cochlear implant use: How basic and more complex emotion recognition relates to language and age at implantation. International Journal of Pediatric Otorhinolaryngology, 87, 219–232.

      50 Mayer, C., & Trezek, B. J. (2017). Literacy outcomes in deaf students with cochlear implants: Current state of the knowledge. The Journal of Deaf Studies and Deaf Education, 23(1), 1–16.

      51 Meister, H., Keilmann, A., Leonhard, K., Streicher, B., Müller, L., & Lang‐Roth, R. (2015). Real‐world verbal communication performance of children provided with cochlear implants or hearing aids. Otology & Neurotology, 36(6), 1023–1028.

      52 Menard, L., Polak, M., Denny, M., Burton, E., Lane, H., Matthies, M. L., … Vick, J. (2007). Interactions of speaking condition and auditory feedback on vowel production in postlingually deaf adults with cochlear implants. Journal of the Acoustical Society of America, 121(6), 3790–3801.

      53 Moberly, A. C., Lowenstein, J. H., & Nittrouer, S. (2016). Word recognition variability with cochlear implants: “Perceptual attention” versus “auditory sensitivity”. Ear and Hearing, 37(1), 14.

      54 Monini, S., Banci, G., Barbara, M., Argiro, M. T., & Filipo, R. (1997). Clarion cochlear implant: Short‐term effects on voice parameters. American Journal of Otology, 18(6), 719–725.

      55 Morris, D. J., Magnusson, L., Faulkner, A., Jönsson, R., & Juul, H. (2013). Identification of vowel length, word stress and compound words and phrases by postlingually‐deafened cochlear implant listeners. Journal of the American Academy of Audiology, 24(9), 879–890.

      56 Nakata, T., Trehub, S. E., & Kanda, Y. (2012). Effect of cochlear implants on children’s perception and production of speech prosody. Journal of the Acoustical Society of America, 131(2), 1307–1314.

      57 Nelson, L. H., Herde, L., Munoz, K., White, K. R., & Page, M. D. (2017). Parent perceptions of their child’s communication and academic experiences with cochlear implants. International Journal of Audiology, 56(3), 164–173.

      58 O’Halpin, R. (2009). The perception and production of stress and intonation by children with cochlear implants (Unpublished Doctoral dissertation). University College, London.

      59 Osberger, M. J., & McGarr, N. S. (1982). Speech production characteristics of the hearing impaired. In N. Lass (Ed.), Speech and language: Advances in basic research and practice (pp. 227–288). New York, NY: Academic Press.

      60 Patro, C., & Mendel, L. L. (2018). Gated word recognition by postlingually deafened adults with cochlear implants: Influence of semantic context. Journal of Speech, Language, and Hearing Research, 61(1), 145–158.

      61 Peng, S. C. (2005). Perception and production of speech intonation in pediatric cochlear implant recipients and children with normal hearing (Unpublished Doctoral dissertation). University of Iowa.

      62 Peng, S. C., Tomblin, J. B., & Turner, C. W. (2008). Production and perception of speech intonation in pediatric cochlear implant recipients and individuals with normal hearing. Ear and Hearing, 29(3), 336–351.

      63 Picou, E. M., Singh, G., Goy, H., Russo, F., Hickson, L., Oxenham, A. J., … Launer, S. (2018). Hearing, emotion, amplification, research, and training workshop: Current understanding of hearing loss and emotion perception and priorities for future research. Trends in Hearing, 22. doi:10.1177/2331216518803215

      64 Poissant, S. F., Peters, K. A., & Robb, M. P. (2006). Acoustic and perceptual appraisal of speech production in pediatric cochlear implant users. International Journal of Pediatric Otorhinolaryngology, 70(7), 1195–1203.

      65 Ramos, Á., Guerra‐Jiménez, G., Rodriguez, C., Borkoski, S., Falcón, J. C., & Perez, D. (2013). Cochlear implants in adults over 60: A study of communicative benefits and the impact on quality of life. Cochlear Implants International, 14(5), 241–245.

      66 Rietveld, A. C. M., & van Heuven, V. J. (2016). Algemene fonetiek (4). Bussum, The Netherlands: Coutinho.

      67 Rødvik, A. K., von Koss Torkildsen, J., Wie, O. B., Storaker, M. A., & Silvola, J. T. (2018). Consonant and vowel identification in cochlear implant users measured by nonsense words: A systematic review and meta‐analysis. Journal of Speech, Language, and Hearing Research, 61(4), 1023–1050.

      68 Ruben, R. J. (2018). Language development in the pediatric cochlear implant patient. Laryngoscope Investigative Otolaryngology, 3(3), 209–213.

      69 Rudner, M., Seeto, M., Keidser, G., Johnson, B., & Rönnberg, J. (2019). Poorer speech reception threshold in noise is associated with lower brain volume in auditory and cognitive processing regions. Journal of Speech, Language, and Hearing Research, 62(4S), 1117–1130.

      70 Sarant, J. Z., Harris, D. C., Galvin, K. L., Bennet, L. A., Canagasabey, M., & Busby, P. A. (2018). Social development in children with early cochlear implants: Normative comparisons and predictive factors, including bilateral implantation. Ear and Hearing, 39(4), 770–782.

      71 Schaette, R., & McAlpine, D. (2011). Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(38), 13452–13457.

      72 Scherer, K. R., Banse, R., & Wallbott, H. G. (2001). Emotion inferences from vocal expression correlate across languages and cultures. Journal of Cross‐Cultural Psychology, 32(1), 76–92.

      73 See, R. L., Driscoll, V. D., Gfeller, K., Kliethermes, S., & Oleson, J. (2013). Speech intonation and melodic contour recognition in children with cochlear implants and with normal hearing. Otology & Neurotology, 34(3), 490.

      74 Sennaroğlu, L., Colletti, V., Lenarz, T., Manrique, M., Laszig, R., Rask‐Andersen, H., … Polak, M. (2016). Consensus statement: Long‐term results of ABI in children with complex inner ear malformations and decision making between CI and ABI. Cochlear Implants International, 17(4), 163–171.

      75 Shannon, R. V. (1983). Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hearing Research, 11(2), 157–189.

      76 Shannon, R. V. (2002). The relative importance of amplitude, temporal, and spectral cues for cochlear implant processor design. American Journal of Audiology, 11(2), 124–127.

      77 Shannon, R. V., Cruz, R. J., & Galvin, J. J. (2011). Effect of stimulation rate on cochlear implant users’ phoneme, word and sentence recognition in quiet and in noise. Audiology & Neuro‐Otology, 16(2), 113–123.

      78 Shriberg, L. D., Austin, D., Lewis, B. A., McSweeny, J. L., & Wilson, D. L. (1997). The percentage of consonants correct (PCC) metric: Extensions and reliability data. Journal of Speech, Language, and Hearing Research, 40(4), 708–722.

      79 Siegbahn, M., Lundin, K., Olsson, G.‐B., Stillesjö, F., Kinnefors, A., Rask‐Andersen, H., & Nyberg, G. (2014). Auditory brainstem implants (ABIs)—20 years of clinical experience in Uppsala, Sweden. Acta Oto‐Laryngologica, 134(10), 1052–1061.

      80 Slepecky, N. (1986). Overview of mechanical damage to the inner ear: Noise as a tool to probe cochlear function. Hearing Research, 22, 307–321.

      81 Sundarrajan, M., Tobey, E. A., Nicholas, J., & Geers, A. E. (2019). Assessing consonant production in children with cochlear implants. Journal of Communication Disorders, 84, 105966.

      82 Szyfter, W., Pruszewicz, A., Woznica, B., Swidzinski, P., Szymiec, E., & Karlik, M. (1996). The acoustic analysis of voice in patients with multi‐channel cochlear implant. Revue de Laryngologie Otologie Rhinologie, 117(3), 225–227.

      83 Torppa, R., & Huotilainen, M. (2019). Why and how music can be used