Группа авторов

Bovine Reproduction


Скачать книгу

male germ line stem cells following transplantation in mice. Biol. Reprod. 69: 701–707.

      13 13 Chuma, S., Kanatsu‐Shinohara, M., Inoue, K. et al. (2005). Spermatogenesis from epiblast and primordial germ cells following transplantation into postnatal mouse testis. Development 132: 117–122.

      14 14 Oatley, J. and Brinster, R. (2012). The germline stem cell niche unit in mammalian testes. Physiol. Rev. 92: 577–595.

      15 15 Yoshida, S., Sukeno, M., and Nabeshima, Y. (2007). A vasculature‐associated niche for undifferentiated spermatogonia in the mouse testis. Science 317: 1722–1726.

      16 16 Staub, C. and Johnson, L. (2018). Review: spermatogenesis in the bull. Animal: 1–9.

      17 17 Helsel, A., Oatley, M., and Oatley, J. (2017). Glycolysis‐optimized conditions enhance maintenance of regenerative integrity in mouse spermatogonial stem cells during long‐term culture. Stem Cell Rep. 8: 1430–1441.

      18 18 Zheng, Y., Zhang, Y., Qu, R. et al. (2014). Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction 147: R65–R74.

      19 19 Brown, H. (1885). Memoirs: On spermatogenesis in the rat. J. Cell Sci. 2: 343–369.

      20 20 Oakberg, E. (1956). Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am. J. Anat. 99: 507–516.

      21 21 Jan, S., Hamer, G., and Repping, S. (2012). Molecular control of rodent spermatogenesis. Biochim. Biophys. Acta 1822: 1838–1850.

      22 22 Curtis, G. (1918). The morphology of the mammalian seminiferous tubule. Am. J. Anat. 24: 339–394.

      23 23 Curtis, S. and Amann, R. (1981). Testicular development and establishment of spermatogenesis in Holstein bulls 1, 2. J. Anim. Sci. 53: 1645–1657.

      24 24 Berndston, W. and Desjardins, C. (1918). The cycle of the seminiferous epithelium and spermatogenesis in the bovine testis. Am. J. Anat. 24: 339–394.

      25 25 Regaud, C. (1901). Etudes sur la structure des tubes seminiferes et sur la spermatogenese chez les mammiferes. Arch. Anat. Microsc. 4: 101–155.

      26 26 Perey, B., Clermont, Y., and Leblond, C.P. (1961). The wave of the seminiferous epithelium in the rat. Dev. Dyn 108: 47–77.

      27 27 Griswold, M. (2015). Spermatogenesis: the commitment to meiosis. Physiol. Rev. 96: 1–17.

      28 28 Amann, R., Johnson, L., Thompson, D. Jr. et al. (1976). Daily spermatozoal production, epididymal spermatozoal reserves and transit time of spermatozoa through the epididymis of the rhesus monkey. Biol. Reprod. 15: 586–592.

      29 29 Amann, R. (1981). A critical review of methods for evaluation of spermatogenesis from seminal characteristics. J. Androl. 2: 37–58.

      30 30 Johnson, L. (1986). Spermatogenesis and aging in the human. J. Androl. 7: 331–354.

      31 31 Wolf, F., Almquist, J., and Hale, E. (1965). Prepuberal behavior and puberal characteristics of beef bulls on high nutrient allowance. J. Anim. Sci. 24: 761–765.

      32 32 Lunstra, D., Ford, J., and Echternkamp, S. (1978). Puberty in beef bulls: hormone concentrations, growth, testicular development, sperm production and sexual aggressiveness in bulls of different breeds. J. Anim. Sci. 46: 1054.

      33 33 Johnson, L., Thompson, D., and Varner, D. (2008). Role of Sertoli cell number and function on regulation of spermatogenesis. Anim. Reprod. Sci. 105: 23–51.

      34 34 Mruk, D. and Cheng, C. (2004). Sertoli–Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev. 25: 747–806.

      35 35 Franca, L., Hess, R., Dufour, J. et al. (2016). The Sertoli cell: one hundred and fifty years of beauty and plasticity. Andrology 4: 189–212.

      36 36 Sertoli, E. (1865). On the existence of special branched cells in the seminiferous tubule of the human testes. Morgagni 7: 31–39.

      37 37 Russell, L., Ren, H., Hikim, I. et al. (1990). A comparative study in twelve mammalian species of volume densities, volumes, and numerical densities of selected testis components, emphasizing those related to the Sertoli cell. Dev. Dyn. 188: 21–30.

      38 38 Morales, C. (1993). Dynamics of Sertoli cell structure and function: structural changes of the Sertoli cell during the cycle of the seminiferous epithelium. Sertoli Cell: 305–329.

      39 39 Russell, L. and Griswold, M. (1993). The Sertoli Cell. Clearwater, FL: Cache River Press.

      40 40 Dym, M. and Fawcett, D. (1970). The blood–testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol. Reprod. 3: 308–326.

      41 41 Cheng, C. and Mruk, D. (2002). Cell junction dynamics in the testis: Sertoli–germ cell interactions and male contraceptive development. Physiol. Rev. 82: 825–874.

      42 42 Vogl, A. (1990;119). Distribution and function of organized concentrations of actin filaments in mammalian spermatogenic cells and Sertoli cells. Int. Rev. Cytol.: 1–56.

      43 43 Pelletier, R.‐M. and Byers, S. (1992). The blood–testis barrier and Sertoli cell junctions: structural considerations. Microsc. Res. Tech. 20: 3–33.

      44 44 Meng, J., Holdcraft, R., Shima, J. et al. (2005). Androgens regulate the permeability of the blood–testis barrier. PNAS 102: 16696–16700.

      45 45 Madara, J. (1998). Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol. 60: 143–159.

      46 46 Setchell, B. (1980). The functional significance of the blood–testis barrier. J. Androl. 1: 3–10.

      47 47 Dejucq, N., Chousterman, S., and Jégou, B. (1997). The testicular antiviral defense system: localization, expression, and regulation of 2′ 5′ oligoadenylate synthetase, double‐stranded RNA‐activated protein kinase, and Mx proteins in the rat seminiferous tubule. J. Cell Biol. 139: 865–873.

      48 48 Beach, S. and Vogl, A. (1999). Spermatid translocation in the rat seminiferous epithelium: coupling membrane trafficking machinery to a junction plaque. Biol. Reprod. 60: 1036–1046.

      49 49 O'Donnell, L., Nicholls, P., O'Bryan, M. et al. (2011). Spermiation: the process of sperm release. Spermatogenesis 1: 14–35.

      50 50 Carr, I., Clegg, E., and Meek, G. (1968). Sertoli cells as phagocytes: an electron microscopic study. J. Anat. 102: 501–509.

      51 51 Clermont, Y., Morales, C., and Hermo, L. (1987). Endocytic activities of Sertoli cells in the rat. Ann. N. Y. Acad. Sci. 513: 1–15.

      52 52 Monsees, T., Schill, W., and Miska, W. (1997). Protease–Protease Inhibitor Interactions in Sertoli Cell–Germ Cell Crosstalk. The Fate of the Male Germ Cell. Boston, MA: Springer.

      53 53 Tsuruta, J., O'Brien, D., and Griswold, M. (1993). Sertoli cell and germ cell cystatin C: stage‐dependent expression of two distinct messenger ribonucleic acid transcripts in rat testes. Biol. Reprod. 49: 1045–1054.

      54 54 Jutte, N., Jansen, R., Grootegoed, J. et al. (1983). FSH stimulation of the production of pyruvate and lactate by rat Sertoli cells may be involved in hormonal regulation of spermatogenesis. J. Reprod. Fertil. 68: 219–226.

      55 55 Jutte, N., Jansen, R., Grootegoed, J. et al. (1982). Regulation of survival of rat pachytene spermatocytes by lactate supply from Sertoli cells. J. Reprod. Fertil. 65: 431–438.

      56 56 Ritzen, E., Boitani, C., Parvinen, M. et al. (1982). Stage‐dependent secretion of ABP by rat seminiferous tubules. Mol. Cell. Endocrinol. 25: 25–33.

      57 57 Gilmont, R., Senger, P., Sylvester, S. et al. (1990). Seminal transferrin and spermatogenic capability in the bull. Biol. Reprod. 43: 151–157.

      58 58 Rivarola, M., Sanchez, P., and Saez, J. (1985). Stimulation of ribonucleic acid and deoxyribonucleic acid synthesis in spermatogenic cells by their coculture with Sertoli cells. Endocrinology 117: 1796–1802.

      59 59 Rato, L., Meneses, M., Silva, B. et al. (2016). New insights on hormones and factors that modulate Sertoli cell metabolism. Histol. Histopathol.