Ian W. Hamley

Small-Angle Scattering


Скачать книгу

l Baseline left-parenthesis q right-parenthesis equals integral Subscript 0 Superscript pi slash 2 Baseline left-bracket StartFraction sine left-parenthesis one half italic q upper L cosine alpha right-parenthesis Over one half italic q upper L cosine alpha EndFraction period StartFraction 2 upper J 1 left-parenthesis italic q upper R sine alpha right-parenthesis Over italic q upper R sine alpha EndFraction right-bracket squared sine alpha normal d alpha"/>

      Here J1(x) denotes a first order Bessel function.

Structure Reflections Positional ratio
Lamellar (001),(002),(003),(004),(005),(006) 1 : 2 : 3 : 4 : 5 : 6
Hexagonal (1,0),(1,1),(2,0),(2,1),(3,0),(2,2) 1 : StartRoot 3 EndRoot colon StartRoot 4 EndRoot colon StartRoot 7 EndRoot : StartRoot 9 EndRoot : StartRoot 12 EndRoot
Body‐centred cubic upper I m ModifyingAbove 3 With bar m (110),(200),(211),(220),(310),(222) StartRoot 2 EndRoot : StartRoot 4 EndRoot colon StartRoot 6 EndRoot colon StartRoot 8 EndRoot : StartRoot 10 EndRoot : StartRoot 12 EndRoot
Face‐centred cubic italic upper F m ModifyingAbove 3 With bar m (111),(200),(220),(311),(222),(400) StartRoot 3 EndRoot : StartRoot 4 EndRoot colon StartRoot 8 EndRoot colon StartRoot 11 EndRoot : StartRoot 12 EndRoot : StartRoot 16 EndRoot
Bicontinuous cubic Primitive cubic ‘plumber's nightmare’ upper I m ModifyingAbove 3 With bar m As upper I m ModifyingAbove 3 With bar m above As upper I m ModifyingAbove 3 With bar m above
Bicontinuous cubic ‘double diamond’ italic upper P n ModifyingAbove 3 With bar m (110),(111),(200),(211),(220),(300) StartRoot 2 EndRoot : StartRoot 3 EndRoot colon StartRoot 4 EndRoot colon StartRoot 6 EndRoot : StartRoot 8 EndRoot : StartRoot 9 EndRoot
Bicontinuous cubic ‘gyroid’ italic upper I a ModifyingAbove 3 With bar d (211),(220),(321),(400),(420),(332),(422) StartRoot 6 EndRoot : StartRoot 8 EndRoot colon StartRoot 14 EndRoot colon StartRoot 16 EndRoot : StartRoot 20 EndRoot : StartRoot 24 EndRoot

      It is possible to compute ν from an equation for osmotic compressibility [17, 18]:

      (1.44)nu equals StartFraction left-parenthesis 1 plus 2 left-parenthesis upper B plus upper C right-parenthesis squared right-parenthesis plus 2 upper D left-bracket 1 plus upper B plus five fourths upper C right-bracket Over left-parenthesis 1 minus upper B minus upper C right-parenthesis Superscript 4 Baseline EndFraction minus 1

      Here B = πR2Ln, C = 4πr3n/3, and D = πRL2/2, where n is the number density [17].

Schematic illustration of the fluctuations in the layer positions in a lamellar structure that are characterized by the membrane stiffness.

      The structure factor for a stack of N fluctuating layers can be written as [21]

      (1.46)x Subscript k Baseline equals StartFraction 1 Over sigma StartRoot 2 pi EndRoot EndFraction exp left-bracket minus StartFraction left-parenthesis upper N Subscript k Baseline minus upper N right-parenthesis squared Over 2 sigma squared EndFraction right-bracket