Группа авторов

Handbook of Ecological and Ecosystem Engineering


Скачать книгу

Bentsen, N.S. et al. (2016). Comparing predicted yield and yield stability of willow and Miscanthus across Denmark. Glob. Change Biol. Bioenergy 6: 1061–1070.

      58 58 McCalmont, J.P., Hastings, A., McNamara, N.P. et al. (2017). Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. Glob. Change Biol. Bioenergy 9: 489–507.

      59 59 Kandel, T.P., Hastings, A., Jørgensen, U., and Olesen, J.E. (2016). Simulation of biomass yield of regular and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of Europe. Ind. Crop. Prod. 86: 329–333.

      60 60 El Bassam, N. (2010). Handbook of Bioenergy Crops – a Complete Reference to Species, Development and Applications. London, United Kingdom: Earthscan, Ltd.

      61 61 Parenti, A., Lambertini, C., and Monti, A. (2018). Areas with natural constraints to agriculture: possibilities and limitations for the cultivation of Switchgrass (Panicum virgatum L.) and Giant Reed (Arundo donax L.) in Europe. In: Land Allocation for Biomass (eds. R. Li and A. Monti), 39–63. Cham, Switzerland: Springer.

      62 62 Jensen, A.B. and Eller, F. (2020). Hybrid Napier grass (Pennisetum purpureum Schumach × P. americanum (L.). Leeke cv. Pakchong 1). and Giant reed (Arundo donax L.). as candidate species in temperate European paludiculture: growth and gas exchange responses to suboptimal temperatures. Aquat. Bot. 160: 103165.

      63 63 Poudel, H.P., Sanciangco, M.D., Kaeppler, S.M. et al. (2019). Quantitative trait loci for freezing tolerance in a lowland x upland switchgrass population. Front. Plant Sci. 10: 372.

      64 64 Paschalidou, A., Tsatiris, M., and Kitikidou, K. (2019). Perennial vs annual energy crops‐SWOT analysis (case study: Greece). Int. Refereed J. Eng. Sci. 7: 1–24.

      65 65 Barbosa, B., Costa, J., Fernando, A.L., and Papazoglou, E.G. (2015). Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crop. Prod. 68: 17–23.

      66 66 Collins, D.B.G. and Bras, R.L. (2007). Plant rooting strategies in water‐limited ecosystems. Water Resour. Res. 43: 1–10.

      67 67 Pietola, L., Horn, R., and Yli‐Halla, M. (2005). Effects of trampling by cattle on the hydraulic and mechanical properties of soil. Soil Tillage Res. 82: 99–108.

      68 68 Liu, B., Zhu, C., Tang, C.S. et al. (2020). Bio‐remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Eng. Geol. 264: 105389.

      69 69 Butt, W.A., Mir, B.A., and Jha, J.N. (2016). Strength behavior of clayey soil reinforced with human hair as a natural fibre. Geotech. Geol. Eng. 34: 411–417.

      70 70 Bartzen, B.T., Hoelscher, G.L., Ribeiro, L.L.O., and Seidel, E.P. (2019). How the soil resistance to penetration affects the development of agricultural crops? J. Exp. Agric. Int. 30: 1–17.

      71 71 Calusi, B., Tramacere, F., Gualtieri, S. et al. (2020). Plant root penetration and growth as a mechanical inclusion problem. Int. J. Non Linear Mech. 120: 103344.

      72 72 Grammelis, P., Malliopoulou, A., Basinas, P., and Danalatos, N.G. (2008). Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int. J. Mol. Sci. 9: 1241–1258.

      73 73 Lu, J., Dijkstra, F.A., Wang, P., and Cheng, W. (2019). Roots of non‐woody perennials accelerated long‐term soil organic matter decomposition through biological and physical mechanisms. Soil Biol. Biochem. 134: 42–53.

      74 74 Guzman, J.G., Ussiri, D.A.N., and Lal, R. (2019). Soil physical properties following conversion of a reclaimed minesoil to bioenergy crop production. Catena 176: 289–295.

      75 75 Alexopoulou, E., Zanetti, F., Papazoglou, E.G. et al. (2017). Long‐term studies on switchgrass grown on a marginal area in Greece under different varieties and nitrogen fertilization rates. Ind. Crop. Prod. 107: 446–452.

      76 76 Fernando, A.L., Boléo, S., Barbosa, B. et al. (2015). Perennial grass production opportunities on marginal Mediterranean land. Bioenergy Res. 8: 1523–1537.

      77 77 O'Brien, S.L. and Jastrow, J.D. (2013). Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biol. Biochem. 61: 1–13.

      78 78 Zhong, X., Li, J., Li, X. et al. (2017). Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma 285: 323–332.

      79 79 Kv, U., Km, R., and Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. J. Pharmacogn. Phytochem. 8: 1256–1267.

      80 80 Niu, X. and Duiker, S.W. (2006). Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U.S. For. Ecol. Manag. 223: 415–427.

      81 81 Ussiri, D.A.N., Guzman, J.G., Lal, R., and Somireddy, U. (2019). Bioenergy crop production on reclaimed mine land in the North Appalachian region, USA. Biomass Bioenergy 125: 188–195.

      82 82 Gao, B., Zhang, X., Tian, C. et al. (2019). Effects of amendments and aided phytostabilization of an energy crop on the metal availability and leaching in mine tailings using a pot test. Environ. Sci. Pollut. Res. 27: 2745–2759.

      83 83 Hamidpour, M., Nemati, H., Abbaszadeh‐Dahaji, P., and Roosta, H.R. (2019). Effects of plant growth‐promoting bacteria on EDTA‐assisted phytostabilization of heavy metals in a contaminated calcareous soil. Environ. Geochem. Health: 3. https://doi.org/10.1007/s10653‐019‐00422‐3.

      84 84 Von Cossel, M., Lewandowski, I., Elbersen, B. et al. (2019). Marginal agricultural land low‐input systems for biomass production. Energies 12: 3123.

      85 85 Von Cossel, M., Wagner, M., Lask, J. et al. (2019). Prospects of bioenergy cropping systems for a more social‐ecologically sound bioeconomy. Agronomy 9: 605.

      86 86 Cordeiro, C.F.S. and Echer, F.R. (2019). Interactive effects of nitrogen‐fixing bacteria inoculation and nitrogen fertilization on soybean yield in unfavorable edaphoclimatic environments. Sci. Rep. 9: 1–11.

      87 87 Yang, L., Yang, Y., Chen, Z. et al. (2014). Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco‐engineering. Ecol. Eng. 62: 27–32.

      88 88 Khodadadi‐Dehkordi, D. (2016). The effects of superabsorbent polymers on soils and plants. Pertanika J. Trop. Agric. Sci. 39: 267–298.

      89 89 Cosentino, S.L., Copani, V., Scalici, G. et al. (2015). Soil erosion mitigation by perennial species under Mediterranean environment. Bioenergy Res. 8: 1538–1547.

      90 90 Singh, A.K. (2010). Bioengineering techniques of slope stabilization and landslide mitigation. Disaster Prev. Manag. 19: 384–397.

      91 91 Cantalice, J.R.B., Nunes, E.O.S., Cavalcante, D.M. et al. (2019). Vegetative‐hydraulic parameters generated by agricultural crops for laminar flows under a semi‐arid environment of Pernambuco, Brazil. Ecol. Indic. 106: 105496.

      92 92 Buxton, D.R. (1996). Quality‐related characteristics of forages as influenced by plant environment and agronomic factors. Anim. Feed Sci. Technol. 59: 37–49.

      93 93 Deléglise, C., Meisser, M., Mosimann, E. et al. (2015). Drought‐induced shifts in plants traits, yields and nutritive value under realistic grazing and mowing managements in a mountain grassland. Agric. Ecosyst. Environ. 213: 94–104.

      94 94 Scordia, D., Testa, G., Cosentino, S.L. et al. (2015). Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. Ssp. aegyptiacum (willd.). hackel in semi‐arid Mediterranean environment. Ital. J. Agron. 10: 185–191.

      95 95 Wilmowicz, E., Kućko, A., Burchardt, S., and Przywieczerski, T. (2019). Molecular and hormonal aspects of drought‐triggered flower shedding in yellow lupine. Int. J. Mol. Sci. 20: 3731.

      96 96 Blum, A., Johnson, J.W., Ramseur, E.L., and Tollner, E.W. (1991). The effect of a drying top soil and a possible non‐hydraulic root signal on wheat growth and yield. J. Exp. Bot. 42: 1225–1231.

      97 97