аппарат устроен так, чтобы он обладал внутренней непротиворечивостью. Ни одно определение или формула никогда не противоречит ни одному другому определению или формуле, внутри самой математической системы. Это очень важное и полезное свойство математики. Но эта внутренняя непротиворечивость ещё не гарантирует внешней непротиворечивости по отношению к внешнему миру. Математический аппарат одинаково безупречно может описывать как то, что происходит в реальном мире, так и то, что в нем никогда не происходит. И эту особенность математического аппарата нужно обязательно учитывать. Отбор математических описаний (того, что происходит в реальном мире) делается уже не при помощи математических знаний, а экспериментально (смотри здесь предыдущий пункт). Ниже мы приводим несколько примеров того, к чему приводит пренебрежение указанной здесь особенностью математического аппарата.
Пример 1. Прямолинейное равноускоренное движение. Пусть s – путь, проходимый точкой; a – ускорение точки; t – время движения точки. Из формулы
находим
Но мы, однако, принимаем во внимание только решение с плюсом:
Но почему? Ведь отрицательное решение вовсе не противоречит математическому аппарату. Мы отбрасываем решение с минусом потому, что здесь мы пока ещё помним о том, что математический аппарат может одинаково безупречно описывать как то, что происходит, так и то, что не происходит в реальном мире. Не существует экспериментов, где время движения точки оказалось бы отрицательным.
Пример 2. Дифференциальные уравнения. Как известно, любое дифференциальное уравнение дает бесконечное множество решений. И только некоторые из этих решений описывают то, что происходит на самом деле. Подавляющая часть этих решений не имеет никакого отношения к описанию реального положения дел. Почему нас это не удивляет? Да потому, что и здесь мы пока ещё помним, что математический аппарат безупречно может описывать как то, что происходит, так и то, что не происходит. Чтобы решение описывало то, что происходит, нужно задать «правильные», реально существующие начальные и граничные условия, а это дело можно поручить только физику. Почему? Потому, что только физик имеет дело с первоначальными, реальными измерениями физических величин, и уж он-то знает, каковы эти величины бывают на самом деле. Если, например, поручить это дело математику, то он может задать «несбыточные» начальные и граничные условия. А потому и решение дифференциального уравнения будет описывать «несбыточные» процессы. Но очень часто даже физик имеет весьма туманное представление о начальных и граничных условиях, а тогда, дифференциальное уравнение становится совершенно бесполезной вещью.
Пример 3. Производная координаты по времени и дифференциал времени. Пусть s – путь, проходимый точкой; t – время движения; v – скорость точки. Производная пути по времени (скорость) в математическом