54, 11, 8262–8275, 2019.
42. Brey Gil, C.S., Patricio, P.S., Oliveira, L.C., Oréfice, R.L., Improved self-healing properties of collagen using polyurethane microcapsules containing reactive diisocyanate: Improved self-healing properties of collagen. Polym. Int., 65, 6, 721–727, 2016.
43. Hillewaere, X.K.D. and Du Prez, F.E., Fifteen chemistries for autonomous external self-healing polymers and composites. Prog. Polym. Sci., 49–50, 121–153, 2015.
44. Di Credico, B., Levi, M., Turri, S., An efficient method for the output of new self-repairing materials through a reactive isocyanate encapsulation. Eur. Polym. J., 49, 9, 2467–2476, 2013.
45. Wang, W., Xu, L., Li, X., Lin, Z., Yang, Y., An, E., Self-healing mechanisms of water triggered smart coating in seawater. J. Mater. Chem. A, 2, 6, 1914–1921, 2014.
46. Song, Y.-K., Jo, Y.-H., Lim, Y.-J., Cho, S.-Y., Yu, H.-C., Ryu, B.-C., Lee, S.-I., Chung, C.-M., Sunlight-Induced Self-Healing of a Microcapsule-Type Protective Coating. ACS Appl. Mater. Interfaces, 5, 4, 1378–1384, 2013.
47. Khalaj Asadi, A., Ebrahimi, M., Mohseni, M., Microencapsulation of a sunlight-curable silicon-based resin in the presence of polyvinylpyrrolidone. Pigm. Resin Technol., 47, 3, 272–278, 2018.
48. Gao, L., He, J., Hu, J., Wang, C., Photoresponsive Self-Healing Polymer Composite with Photoabsorbing Hybrid Microcapsules. ACS Appl. Mater. Interfaces, 7, 45, 25546–25552, 2015.
49. Zhu, Y., Cao, K., Chen, M., Wu, L., Synthesis of UV-Responsive Self-Healing Microcapsules and Their Potential Application in Aerospace Coatings. ACS Appl. Mater. Interfaces, 11, 36, 33314–33322, 2019.
50. Samadzadeh, M., Boura, S.H., Peikari, M., Kasiriha, S.M., Ashrafi, A., A review on self-healing coatings based on micro/nanocapsules. Prog. Org. Coat., 68, 3, 159–164, 2010.
51. Tripathi, M., Rahamtullah, Kumar, D., Rajagopal, C., Kumar Roy, P., Influence of microcapsule shell material on the mechanical behavior of epoxy composites for self-healing applications. J. Appl. Polym. Sci., 131, 15, 40572, 2014.
52. Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J.B., Hirschberg, J.H.K.K., Lange, R.F.M., Lowe, J.K.L., Meijer, E.W., Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science, 278, 5343, 1601–1604, 1997.
53. Bosman, A.W., Sijbesma, R.P., Meijer, E.W., Supramolecular polymers at work. Mater. Today, 7, 4, 34–39, 2004.
54. Deflorian, F., Rossi, S., Scrinzi, E., Self-healing supramolecular polyurethane coatings: Preliminary study of the corrosion protective properties. Corros. Eng. Sci. Technol., 48, 2, 147–154, 2013.
55. Wang, X., Li, Y., Qian, Y., Qi, H., Li, J., Sun, J., Mechanically Robust Atomic Oxygen-Resistant Coatings Capable of Autonomously Healing Damage in Low Earth Orbit Space Environment. Adv. Mater., 30, 36, 1803854, 2018.
56. Heinzmann, C., Lamparth, I., Rist, K., Moszner, N., Fiore, G.L., Weder, C., Supramolecular Polymer Networks Made by Solvent-Free Copolymerization of a Liquid 2-Ureido-4[1 H ]-pyrimidinone Methacrylamide. Macromolecules, 48, 22, 8128–8136, 2015.
57. Cordier, P., Tournilhac, F., Soulié-Ziakovic, C., Leibler, L., Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 451, 7181, 977–980, 2008.
58. Montarnal, D., Tournilhac, F., Hidalgo, M., Couturier, J.-L., Leibler, L., Versatile One-Pot Synthesis of Supramolecular Plastics and Self-Healing Rubbers. J. Am. Chem. Soc., 131, 23, 7966–7967, 2009.
59. Montarnal, D., Cordier, P., Soulié-Ziakovic, C., Tournilhac, F., Leibler, L., Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J. Polym. Sci. Part Polym. Chem., 46, 24, 7925–7936, 2008.
60. Mynar, J.L. and Aida, T., The gift of healing. Nature, 451, 7181, 895–896, 2008.
61. Sordo, F., Mougnier, S.-J., Loureiro, N., Tournilhac, F., Michaud, V., Design of Self-Healing Supramolecular Rubbers with a Tunable Number of Chemical Cross-Links. Macromolecules, 48, 13, 4394–4402, 2015.
62. Khor, S.P., Varley, R.J., Shen, S.Z., Yuan, Q., Thermo-reversible healing in a crosslinked polymer network containing covalent and thermo-reversible bonds. J. Appl. Polym. Sci., 128, 6, 3743–3750, 2013.
63. Montarnal, D., Tournilhac, F., Hidalgo, M., Leibler, L., Epoxy-based networks combining chemical and supramolecular hydrogen-bonding cross-links. J. Polym. Sci. Part Polym. Chem., 48, 5, 1133–1141, 2010.
64. Liu, L., Zhu, L., Zhang, L., A Solvent-Resistant and Biocompatible Self-Healing Supramolecular Elastomer with Tunable Mechanical Properties. Macromol. Chem. Phys., 219, 4, 1700409, 2018.
65. Altuna, F.I., Casado, U., dell’Erba, I.E., Luna, L., Hoppe, C.E., Williams, R.J.J., Epoxy vitrimers incorporating physical crosslinks produced by selfassociation of alkyl chains. Polym. Chem., 11, 7, 1337–1347, 2020.
66. Kennedy, J.P. and Castner, K.F., Thermally reversible polymer systems by cyclopentadienylation. I. A model for termination by cyclopentadienylation of olefin polymerization. J. Polym. Sci. Polym. Chem. Ed., 17, 7, 2039–2054, 1979.
67. Stevens, M.P. and Jenkins, A.D., Crosslinking of polystyrene via pendant maleimide groups. J. Polym. Sci. Polym. Chem. Ed., 17, 11, 3675–3685, 1979.
68. Khan, N.I., Halder, S., Gunjan, S.B., Prasad, T., A review on Diels-Alder based self-healing polymer composites. IOP Conf. Ser. Mater. Sci. Eng., 377, 012007, 2018.
69. Chen, X., A Thermally Re-mendable Cross-Linked Polymeric Material. Science, 295, 5560, 1698–1702, 2002.
70. Chen, X., Wudl, F., Mal, A.K., Shen, H., Nutt, S.R., New Thermally Remendable Highly Cross-Linked Polymeric Materials. Macromolecules, 36, 6, 1802–1807, 2003.
71. Reutenauer, P., Buhler, E., Boul, P.J., Candau, S.J., Lehn, J.-M., Room Temperature Dynamic Polymers Based on Diels-Alder Chemistry. Chem.—Eur. J., 15, 8, 1893–1900, 2009.
72. Oehlenschlaeger, K.K., Mueller, J.O., Brandt, J., Hilf, S., Lederer, A., Wilhelm, M., Graf, R., Coote, M.L., Schmidt, F.G., Barner-Kowollik, C., Adaptable Hetero Diels–Alder Networks for Fast Self-Healing under Mild Conditions. Adv. Mater., 26, 21, 3561–3566, 2014.
73. Grigoras, M. and Colotin, G., Copolymerization of a bisanthracene compound with bismaleimides by Diels–Alder cycloaddition. Polym. Int., 50, 12, 1375–1378, 2001.
74. Jones, J.R., Liotta, C.L., Collard, D.M., Schiraldi, D.A., Cross-Linking and Modification of Poly(ethylene terephthalate-co-2,6-anthracenedicarbox-ylate) by Diels–Alder Reactions with Maleimides. Macromolecules, 32, 18, 5786–5792, 1999.
75. Zhang, G., Zhao, Q., Yang, L., Zou, W., Xi, X., Xie, T., Exploring Dynamic Equilibrium of Diels–Alder Reaction for Solid State Plasticity in Remoldable Shape Memory Polymer Network. ACS Macro Lett., 5, 7, 805–808, 2016.
76. Chakma, P. and Konkolewicz, D., Dynamic Covalent Bonds in Polymeric Materials. Angew. Chem. Int. Ed., 58, 29, 9682–9695, 2019.
77. Winne, J.M., Leibler, L., Du Prez, F.E., Dynamic covalent chemistry in polymer networks: A mechanistic perspective. Polym. Chem., 10, 45, 6091–6108, 2019.
78. Fortman, D.J., Brutman, J.P., Cramer, C.J., Hillmyer, M.A., Dichtel, W.R., Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers. J. Am. Chem. Soc., 137, 44, 14019–14022, 2015.
79. Black, A.L., Lenhardt, J.M., Craig, S.L., From molecular mechanochemistry to stress-responsive materials. J. Mater. Chem., 21, 6, 1655–1663, 2011.
80. Tee, B.C.-K., Wang, C., Allen, R., Bao, Z., An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol., 7, 825, 2012.