Группа авторов

Self-Healing Smart Materials


Скачать книгу

White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S., Autonomic healing of polymer composites. Nature, 409, 794, 2001.

      6. Jin, H.H., Mangun, C.L., Griffin, A.S., Moore, J.S., Sottos, N.R., White, S.R., Thermally stable autonomic healing in epoxy using a dual-microcapsule system. Adv. Mater., 24, 282, 2014.

      7. Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S., White, S.R., Self-healing materials with microvascular networks. Nat. Mater., 6, 581, 2007.

      8. Fang, Y., Li, J., Du, X., Dua, Z., Cheng, X., Wang, H., Thermal- and mechanicalresponsive polyurethane elastomers with selfhealing, mechanical-reinforced, and thermal-stable capabilities. Polymer, 158, 166, 2018.

      9. Khimi, S.R., Syamsinara, S.N., Najwa, T.N.L., Effect of Carbon Black on Self-healing Efficiency of Natural. Rubber. Mat. Today: Proceedings, 17 1064, 2019.

      10. Denga, Y., Liang, X., Pei, X., Zhai, K., Wang, C., Zhang, B., Bai, B., Zhang, Y., Wang, P., Tan, Y., Xu, K. Self-healing ability and application of impact hardening polymers. Polymer Testing, 76, 43, 2019.

      11. Grande, A.M., Garcia, S.J., Van der Zwaag, S., On the interfacial healing of a supramolecular elastomer. Polymer. 56, 435, 2015.

      12. Shchukin D.G., Container-based multifunctional self-healing polymer coatings. Polym. Chem. 4, 4871, 2013.

      13. Li, G.L., Zheng, Z.L., Mohwald, H., Shchukin, D.G., Silica/polymer doublewalled hybrid nanotubes: Synthesis and application as stimuli-responsive nanocontainers in self-healing coatings. ACS Nano, 7, 2470, 2013.

      14. Xiang, H.P., Rong, M.Z., Zhang, M.Q., A facile method for imparting sunlight driven catalyst-free self-healability and recyclability to commercial silicone elastomer. Polymer, 108, 339, 2017.

      16. Jin, B., Liu, M., Zhang, Q., Zhan, X., Chen, F., Silicone oil swelling slippery surfaces based on mussel-inspired magnetic nanoparticles with multiple self-healing mechanisms. Langmuir, 33, 10340, 2017.

      17. Martin, R., Rekondo, A., Echeberria, J., Cabanero, G., Grande, H.J., Odriozola, I., Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chem. Commun., 48, 8255, 2012.

      18. Wittmer, A., Brinkmann, A., Stenzel, V., Hartwig, A., Koschek, K., Moisturemediated intrinsic self-healing of modified polyurethane urea polymers. J. Polym. Sci. Pol. Chem., 56, 537, 2018.

      19. Chen, S., Zhang, B., Zhang, N., Ge, F., Zhang, B., Wang, X., Song, J., Development of selfhealing D-gluconic acetal-based supramolecular ionogels for potential use as smart quasisolid electrochemical materials. ACS Appl. Mater. Interfaces, 10, 5871, 2018.

      20. Gulyuz, U. and Okay, O., Self-Healing Poly (acrylic acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength. Macromolecules, 47, 6889, 2014.

      21. Okay, O., Self-healing hydrogels formed via hydrophobic interactions, in: Supramolecular Polymer Networks and Gels, pp. 101–142, Springer International Publishing, Switzerland, 2015.

      22. Fox, J., Wie, J.J., Greenland, B.W., Burattini, S., Hayes, W., Colquhoun, H.M., Mackay, M.E., Rowan, S.J., High-strength, healable, supramolecular polymer nanocomposites. J. Am. Chem. Soc., 134, 5362, 2012.

      23. Ling, S., Chend, W., Fane, Y., Zhenga, K., Jinb, K., Yud, K., Buehlerb, M.J., Kaplanc, D.L., Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Prog. Polym. Sci., 85, 1, 2018.

      24. Liu, J., Ma, X., Tong, Y., Lang, M., Self-healing polyurethane based on ditelluride bonds. Appl. Surf. Sci., 455, 318, 2018.

      25. Xu, C., Cao, L., Lin, B., Liang, X., Chen, Y., Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization. ACS Appl. Mater. Interfaces, 8, 27, 17728, 2016.

      26. Zhang, D.D., Ruan, Y., Zhang, B.Q., Qiao, X., Deng, G., Chen, Y., Liu, C.Y., A self-healing PDMS elastomer based on acylhydrazone groups and the role of hydrogen bonds. Polymer, 120, 189, 2017.

      27. Tanasi, P., Hernández Santana, M., Carretero-González, J., Verdejo, R., López-Manchado, M.A., Thermo-reversible crosslinked natural rubber: A Diels–Alder route for reuse and self-healing properties in elastomers. Polymer, 175, 15, 2019.

      28. Wool, R.P., Welding of Polymer Interfaces. Polym. Eng. Sci., 9, 1340–1367, 1989.

      30. Terryn, S., Brancart, J., Lefeber, D., Van Assche, J., Vanderborght, B., Self-healing soft pneumatic robots. Sci. Rob., 63, 28, 2017.

      31. Syrett, J.A., Becer, C.R., Haddleton, D.M., Self-healing and self mendable polymers. Polym. Chem., 1, 978, 2010.

      32. Ying, H., Zhang, Y., Cheng, J., Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun., 5, 3218, 2014.

      33. Rekondo, A., Martin, R., Ruiz de Luzuriaga, A., Cabañero, G., Grande, H.J., Odriozola, I., Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. R. Soc. Chem., 1, 237, 2014.

      34. Yang, Y., Molecular Level Design of Self-Healing Polyurethanes. Tiger prints, All dissertations, vol. 8, p. 1685. Clamson University. Clemson, South Carolina, 2016.

      35. Hernández, M., Grande, A.M., Dierkes, W., Bijleveld, J., Van der Zwaag, S., García, S.J., Turning Vulcanized Natural Rubber into a Self-Healing Polymer: Effect of the Disulfide/Polysulfide Ratio. ACS Sustainable Chem. Eng., 4, 5776, 2016.

      36. Grande, A.M., Garcia, S.J., Van der Zwaag, S., On the interfacial healing of a supramolecular elastomer. Polymer, 56, 435, 2015.

      37. Kanu, N.J., Gupta, E., Kumar Vates, U., Kumar Singh, G., Self-healing composites: A state-of-the-art review. Composites Part A, 121, 474, 2019.

      38. Kuang, X., Liu, G., Dong, X., Wang, D., Enhancement of Mechanical and Self-Healing Performance in Multiwall Carbon Nanotube/Rubber Composites via Diels–Alder Bonding. Macromol. Mater. Eng., 301, 535, 2016.

      39. Fang, Y., Li, J., Du, X., Dua, Z., Chenga, X., Wang, H., Thermal- and mechan-ical-responsive polyurethane elastomers with selfhealing, mechanical-reinforced, and thermal-stable capabilities. Polymer, 158, 166, 2018.

      40. Peng, Y., Yang, Y., Wu, Q., Wang, S., Huang, G., Wu, J., Strong and tough self-healing elastomers enabled by dual reversible networks formed by ionic interactions and dynamic covalent bonds. Polymer, 157, 172, 2018.

      41. Cao, L., Fan, J., Huang, J., Chen, Y., A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J. Mater. Chem. A, 7, 9, 4922, 2019.

      42. Xu, C., Cui, R., Fu, L., Lin, B., Recyclable and heat-healable epoxidized natural rubber/bentonite composites. Compos. Sci. Technol., 167, 421, 2018.

      43. Trovatti, E., Cunha, A.G., Carvalho, A.J.F., Gandini, A., Furan-modified natural rubber: A substrate for its reversible crosslinking and for clicking it onto nanocellulose. Int. J. Biol. Macromol., 95, 762, 2017.

      44. Zhan, Y., Meng, Y., Li, Y., Electric heating behavior of flexible graphene/ natural rubber conductor with self-healing conductive network. Mater. Lett., 192, 115, 2017.