Группа авторов

Supercharge, Invasion, and Mudcake Growth in Downhole Applications


Скачать книгу

in this volume, a number of enabling technologies contribute to the operational success of formation testers in general, and in particular the robustness of the tools mentioned in Sections 1.2.1 and 1.2.2. A critical problem is that associated with “stuck tools,” which results in expensive fishing jobs, lost tools and increased rig costs.

Schematic illustration of IPSRD stuck tool release mechanism. Photos depict Rigsite facilities.

      1.3 Recent Formation Testing Developments.

      Conventional formation tester tools with single and dual probes are shown in Figures 1.8 and 1.9, noting that different testers may be outfitted with different pad designs depending on the application. For instance, small round nozzles may be used with firm matrix rock; in low permeability formations, larger nozzles may be preferable in order to prevent excessive pressure drawdowns that result in the undesired release of dissolved gas or increased mechanical demands. Larger slot nozzles are ideal when formations are lower in permeability or naturally fractured and higher pump rates are desired.

Photos depict a New triple probe formation tester.

      Figure 1.21. New COSL triple probe tester, perspective view.

Snapshots of Simulator menu for Probes 3, 7 and 11 (top), sink Probe 7 pressure drop versus kh and kv at fixed rate (bottom).

      • Chin, W.C., Formation Testing: Supercharge, Pressure Testing and Contamination Models, John Wiley & Sons, Hoboken, New Jersey, 2019.

      • Chin, W.C., Zhou, Y., Feng, Y. and Yu, Q., Formation Testing: Low Mobility Pressure Transient Analysis, John Wiley & Sons, Hoboken, New Jersey, 2015.

      • Chin, W.C., Zhou, Y., Feng, Y., Yu, Q. and Zhao, L., Formation Testing: Pressure Transient and Contamination Analysis, John Wiley & Sons, Hoboken, New Jersey, 2014.

      • Lu, T., Qin, X., Feng, Y., Zhou, Y. and Chin, W.C., Supercharge, Invasion and Mudcake Growth in Downhole Applications, John Wiley & Sons, Hoboken, New Jersey, 2021.

      • Lu, T., Zhou, M., Feng, Y., Yang, Y. and Chin, W.C., Multiprobe Pressure Analysis and Interpretation, John Wiley & Sons, Hoboken, New Jersey, 2021.

      • Qin, X., Feng, Y., Wu, L., Tan, Z., Zhou, Y. and Chin, W.C., “Permeability and Pore Pressure Prediction in Highly Supercharged FTWD Environments,” submitted for publication, 2020.

      • Qin, X., Feng, Y., Song, W., Chu, X. and Wang, L., “Development on Incongruous Pushing and Stuck Releasing Device of EFDT,” Journal of China Offshore Oilfield Technology, Vol. 4, No. 1, April 2016, pp. 70-74.

      •