Группа авторов

Functionalized Nanomaterials for Catalytic Application


Скачать книгу

A., Mishra, P.K., Tiwary, D. (Eds.), pp. 15–38, Elsevier, Netherlands, Amsterdam, 2020.

      35. Chaturvedi, S., Pragnesh N. Dave, P.N., Shah, N.K., Applications of nanocatalyst in new era. J. Saud. Chem. Soc., 16, 3, 307–325, 2012.

      36. Salgado, J.R.C., Duarte, R.G., Ilharco, L.M., Rego, A.M.B., Ferraria, A.M., Ferreira, M.G.S., Effect of functionalized carbon as Pt electrocatalyst support on the methanol oxidation reaction. Appl. Catal. B. Environ., 102, 496–504, 2011.

      37. Ren, X., Qianyuan Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A., Wu, G., Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain. Energy Fuels, 4, 15–30, 2020.

      38. Sui, S., Wang, X., Zhou, X., Su, Y., Riffat, S., Liu, C-j., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A, 5, 1808–1825, 2017.

      39. Qu, R., Liu, N., Chen, Y., Zhang, W., Zhang, Q., Liu, Y., Feng, L., A MoS2 nanosheet-coated mesh for pH-induced multi-pollutant water remediation with in situ electrocatalysis. J. Mater. Chem. A., 6, 6435–6441, 2018.

      40. Wang, X., Xie, Y., Yang, G., Hao, J., Ma, J., Ning, P., Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach. Front. Environ. Sci. Eng., 14, 22, 2020.

      41. Qiu, L., Peng, Y., Liu, B., Lin, B., Peng, Y., Malik, M.J., Yan, F., Polypyrrole nanotube-supported gold nanoparticles: an efficient electrocatalyst for oxygen reduction and catalytic reduction of 4-nitrophenol. Appl. Catal. A: Gen., 413–414, 230–237, 2012.

      42. Yang, Y., Wang, H., Li, J., He, B., Wang, T., Liao, S., Novel functionalized nano-TiO2 loading electrocatalytic membrane for oily wastewater treatment. Environ. Sci. Technol., 46, 12, 6815–6821, 2012.

      43. Bankole, M.Y., Abdulkareem, A.S., Mohammed, I.A., Ochigbo, S.S., Tijani, J.O., Abubakre, O.K., Roos, W.D., Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci. Rep., 9, 4475, 2019.

      44. Chen, Y., Li, H., Li, W., Tu, Y., Zhang, Y., Han, W., Wang, L., Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2- NTs/SnO2-Sb/PbO2 electrode. Chemosphere, 113, 48–55, 2014.

      46. Cui, C., Wu, J., Xin, Y., Han, Y., Highly stable palladium-loaded TiO2 nanotube array electrode for the electrocatalytic hydrodehalogenation of poly-chlorinated biphenyls. Korean J. Chem. Eng., 32, 1069–1074, 2015.

      47. Zhou, X., Xu, D., Chen, Y., Hu, Y., Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@PC modified cathode. Chem. Eng. J., 384, 123324, 2020.

      48. Ganiyu, S.O., Zhou, M., Carlos, A., Mart´ınez-Huitle, Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal, B: Environ., 235, 103–129, 2018.

      49. Barros, W.R.P., Steter, J.R., Lanza, M.R.V., Tavares, A.C., Catalytic activity of Fe3-x CuxO4(0 ≤ x ≤ 0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process. Appl. Catal, B: Environ., 180, 434–441, 2016.

      50. Liang, L., Yu, F., An, Y., Liu, M., Zhou, M., Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process. Environ. Sci. Pollut. Res., 24, 1122–1132, 2017.

      51. Lu, J-Y., Yuan, Y-R., Hu, X., Liu, W-J., Li, C-X., Liu, H., Li, W-W., MOF-derived Fe2O3/nitrogen/carbon composite as stable heterogeneous electro-Fenton catalyst. Ind. Eng. Chem. Res., 59, 5, 1800–1808, 2020.

      52. Zhao, H., Qian, L., Guan, X., Wu, D., Zhao, G., Continuous bulk FeCuC aerogel with ultradispersed metal nanoparticles: an efficient 3D heterogeneous electro-Fenton cathode over a wide range of pH 3-9. Environ. Sci. Technol., 50, 10, 5225–5233, 2016.

      53. Zhong, Y., Liang, X., Tan, W., Zhong, Y., He, H., Zhu, J., Yuan, P., Jiang, Z., A comparative study about the effects of isomorphous substitution of transition metals (Ti, Cr, Mn, Co and Ni) on the UV/Fenton catalytic activity of magnetite. J. Mol. Catal. A: Chem., 372, 29–34, 2013.

      54. Liang, X., Zhong, Y., Zhu, S., Ma, L., Yuan, P., Zhu, J., He, H., Jiang., Z., The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. J. Hazard. Mater., 199-200, 247–254, 2012.

      55. Zhong, Y., Chen, Z.-F., Yan, S.-C., Wei, W.-W., Zhang, Q., Liu, G., Cai, Z., Yu, L., Photocatalytic transformation of climbazole and 4-chlorophenol formation using a floral array of chromium-substituted magnetite nanoparticles activated with peroxymonosulfate. Environ. Sci.: Nano, 6, 2986–2999, 2019.

      56. Cui, L., Huang, H., Ding, P., Zhu, S., Jing, W., Gu, X., Cogeneration of H2O2 and ·OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor. Sep. Purif. Technol., 237, 116380, 2020.

      58. Mi, X., Li, Y., Ning, X., Jia, J., Wang, H., Xia, Y., Sun, Y., Zhan, S., Electro-Fenton degradation of ciprofloxacin with highly ordered mesoporous MnCo2O4-CF cathode: enhanced redox capacity and accelerated electron transfer. Chem. Eng. J., 358, 299–309, 2019.

      59. Cao, P., Zhao, K., Quan, X., Chen, S., Yu, H., Efficient and stable heterogeneous electro-Fenton system using iron oxides embedded in Cu, N co-doped hollow porous carbon as functional electrocatalyst. Sep. Purif. Technol., 238, 116424, 2020.

      60. Dong, P., Liu, W., Wang, S., Wang, H., Wang, Y., Zhao, C., In suit synthesis of Fe3O4 on carbon fiber paper@polyaniline substrate as novel self-supported electrode for heterogeneous electro-Fenton oxidation. Electrochim. Acta, 308, 54–63, 2019.

      61. Wang, Y., Zhang, H., Li, B., Yu, M., Zhao, R., Xu, X., Cai, L., γ-FeOOH graphene polyacrylamide carbonized aerogel as air-cathode in electro-Fenton process for enhanced degradation of sulfamethoxazole. Chem. Eng. J., 359, 914–923, 2019.

      62. Wu, P., Zhang, Y., Chen, Z., Duan, Y., Lai, Y., Fang, Q., Wang, F., Li, S., Performance of boron-doped graphene aerogel modified gas diffusion electrode for in-situ metal-free electrochemical advanced oxidation of Bisphenol A. Appl. Catal. B: Environ., 255, 117784, 2019.

      63. Mi, X., Han, J., Sun, Y., Li, Y., Hu, W., Zhan, S., Enhanced catalytic degradation by using RGO-Ce/WO3 nanosheets modified CF as electro-Fenton cathode: influence factors, reaction mechanism and pathways. J. Hazard. Mater., 367, 365–374, 2019.

      64. Yu, F., Wang, Y., Ma, H., Enhancing the yield of H2O2 from oxygen reduction reaction performance by hierarchically porous carbon modified active carbon fiber as an effective cathode used in electro-Fenton. J. Electroanal. Chem., 838, 57–65, 2019.

      65. Zhang, C., Zhou, M., Ren, G., Yu, X., Ma, L., Yang, J., Yu, F., Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res., 70, 414–424, 2015.

      66. Haider, M.R., Jiang, W.-L., Han, J.-L., Sharif, H.M.A., Ding, Y.-C., Cheng, H.-Y., Wang, A.-J., In-situ electrode fabrication from polyaniline derived N-doped