Toxicology 2005; 35(4): 325–61.
11 11 Dahms M, Spahn‐Langguth H. Covalent binding of acidic drugs via reactive intermediates: detection of benoxaprofen and flunoxaprofen protein adducts in biological material. Die Pharmazie 1996; 51 (11): 874–81.
12 12 FDA TU. Safety Testing of Drug Metabolites Guidance for Industry; 2020. Available from: https://www.fda.gov/media/72279/download.
13 13 Uetrecht J. Prediction of a new drug's potential to cause idiosyncratic reactions. Current Opinion in Drug Discovery & Development 2001; 4(1): 55–9.
14 14 Lammert C, Bjornsson E, Niklasson A, Chalasani N. Oral medications with significant hepatic metabolism at higher risk for hepatic adverse events. Hepatology 2010; 51(2): 615–20.
15 15 Chen M, Borlak J, Tong W. A model to predict severity of drug‐induced liver injury in humans. Hepatology 2016; 64(3): 931–40.
16 16 Limban C, Nuţă DC, Chiriţă C, Negreș S, Arsene AL, Goumenou M, et al. The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicology Reports 2018; 5: 943–53.
17 17 Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, et al. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chemical Research in Toxicology 2011; 24(9): 1345–410.
18 18 Enoch S, Ellison C, Schultz T, Cronin M. A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity. Critical Reviews in Toxicology 2011; 41(9): 783–802.
19 19 Claesson A, Minidis A. Systematic approach to organizing structural alerts for reactive metabolite formation from potential drugs. Chemical Research in Toxicology 2018; 31(6): 389–411.
20 20 Evans DC, Watt AP, Nicoll‐Griffith DA, Baillie TA. Drug− protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chemical Research in Toxicology 2004; 17(1): 3–16.
21 21 Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, et al. Combination of GSH trapping and time‐dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites. Drug Metabolism and Disposition 2011; 39(7): 1247–54.
22 22 Zaïr ZM, Eloranta JJ, Stieger B, Kullak‐Ublick GA. Pharmacogenetics of OATP (SLC21/SLCO), OAT and OCT (SLC22) and PEPT (SLC15) transporters in the intestine, liver and kidney. Pharmacogenomics, 2008, 9(5):597–624.
23 23 Dong AN, Tan BH, Pan Y, Ong CE. Cytochrome P 450 genotype‐guided drug therapies: an update on current states. Clinical and Experimental Pharmacology and Physiology 2018; 45 (10): 991–1001.
24 24 Khurana V, Minocha M, Pal D, Mitra AK. Inhibition of OATP‐1B1 and OATP‐1B3 by tyrosine kinase inhibitors. Drug Metabolism and Drug Interactions 2014; 29(4): 249–59.
25 25 Campbell SD, de Morais SM, Xu JJ. Inhibition of human organic anion transporting polypeptide OATP 1B1 as a mechanism of drug‐induced hyperbilirubinemia. Chemico‐Biological Interactions 2004; 150(2): 179–87.
26 26 Chiou WJ, de Morais SM, Kikuchi R, Voorman RL, Li X, Bow DA. in vitro OATP1B1 and OATP1B3 inhibition is associated with observations of benign clinical unconjugated hyperbilirubinemia. Xenobiotica 2014; 44(3): 276–82.
27 27van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. The Journal of Clinical Investigation 2012; 122(2): 519–28.
28 28 Denk GU, Soroka CJ, Takeyama Y, Chen W‐S, Schuetz JD, Boyer JL. Multidrug resistance‐associated protein 4 is up‐regulated in liver but down‐regulated in kidney in obstructive cholestasis in the rat. Journal of Hepatology 2004; 40(4): 585–91.
29 29 Borst P, de Wolf C, van de Wetering K. Multidrug resistance‐associated proteins 3, 4, and 5. Pflügers Archiv‐European Journal of Physiology 2007; 453(5): 661–73.
30 30 Vaz FM, Paulusma CC, Huidekoper H, de Ru M, Lim C, Koster J, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 2015; 61(1): 260–7.
31 31 Davit‐Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet Journal of Rare Diseases 2009; 4(1): 1.
32 32 Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, et al. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin–Johnson syndrome. Hepatology 1997; 25(6): 1539–42.
33 33 Mahdi ZM, Synal‐Hermanns U, Yoker A, Locher KP, Stieger B. Role of multidrug resistance protein 3 in antifungal‐induced cholestasis. Molecular Pharmacology 2016; 90(1): 23–34.
34 34 Dawson S, Stahl S, Paul N, Barber J, Kenna JG. in vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug‐induced liver injury in humans. Drug Metabolism and Disposition 2012; 40(1): 130–8.
35 35 Fattinger K, Funk C, Pantze M, Weber C, Reichen J, Stieger B, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clinical Pharmacology & Therapeutics 2001; 69(4): 223–31.
36 36 Kis E, Ioja E, Rajnai Z, Jani M, Méhn D, Herédi‐Szabó K, et al. BSEP inhibition–in vitro screens to assess cholestatic potential of drugs. Toxicology in vitro 2012; 26(8): 1294–9.
37 37 Chan R, Benet LZ. Measures of BSEP inhibition in vitro are not useful predictors of DILI. Toxicological Sciences 2017; 162(2): 499–508.
38 38 Watkins PB. The DILI‐sim initiative: insights into hepatotoxicity mechanisms and biomarker interpretation. Clinical and Translational Science 2019; 12(2): 122–9.
39 39 Guo YX, Xu XF, Zhang QZ, Li C, Deng Y, Jiang P, et al. The inhibition of hepatic bile acids transporters Ntcp and Bsep is involved in the pathogenesis of isoniazid/rifampicin‐induced hepatotoxicity. Toxicology Mechanisms and Methods 2015; 25(5): 382–7.
40 40 Feng B, Xu JJ, Bi Y‐A, Mireles R, Davidson R, Duignan DB, et al. Role of hepatic transporters in the disposition and hepatotoxicity of a HER2 tyrosine kinase inhibitor CP‐724, 714. Toxicological Sciences 2009; 108(2): 492–500.
41 41 Klein K, Zanger UM. Pharmacogenomics of cytochrome P450 3A4: recent progress toward the "missing heritability" problem. Frontiers in Genetics 2013; 4: 12.
42 42 Amacher DE. The primary role of hepatic metabolism in idiosyncratic drug‐induced liver injury. Expert Opinion on Drug Metabolism & Toxicology 2012; 8(3): 335–47.
43 43 Madian AG, Wheeler HE, Jones RB, Dolan ME. Relating human genetic variation to variation in drug responses. Trends in Genetics: TIG 2012; 28 (10): 487–95.
44 44 Pachkoria K, Lucena MI, Molokhia M, Cueto R, Carballo AS, Carvajal A, et al. Genetic and molecular factors in drug‐induced liver injury: a review. Current Drug Safety 2007; 2(2): 97–112.
45 45 FDA TU. Table of Pharmacogenetic Associations; 2020. Available from: https://www.fda.gov/medical‐devices/precision‐medicine/table‐pharmacogenetic‐associations?utm_campaign=2020‐02‐20%20Pharmacogenetic%20Associations%3A%20Scientific%20Evidence%20Underlying%20Gene‐Drug%20Interactions&utm_medium=email&utm_source=Eloqua.
46 46 Sgro C, Clinard F, Ouazir K, Chanay H, Allard C, Guilleminet C, et al. Incidence of drug‐induced hepatic injuries: a French population‐based study. Hepatology (Baltimore, MD) 2002; 36(2): 451–5.
47 47 Ariyoshi N, Iga Y, Hirata K, Sato Y, Miura G, Ishii I, et al. Enhanced susceptibility of