Albert P. Li

Transporters and Drug-Metabolizing Enzymes in Drug Toxicity


Скачать книгу

major thoracic surgery. Br J Clin Pract 1981; 35 (7–8):250–3.

      91 91 Wilson AP, Gruneberg RN, Treasure T, Sturridge MF. A clinical trial of teicoplanin compared with a combination of flucloxacillin and tobramycin as antibiotic prophylaxis for cardiac surgery: the use of a scoring method to assess the incidence of wound infection. J Hosp Infect. 1986; 7 Suppl A:105–12.

      92 92 Holm S, Larsson SE. The penetration of flucloxacillin into cortical and cancellous bone during arthroplasty of the knee. Int Orthop 1982; 6(4):243–7.

      93 93 Koek GH, Stricker BH, Blok AP, Schalm SW, Desmet VJ. Flucloxacillin‐associated hepatic injury. Liver 1994; 14(5):225–9.

      94 94 Turner IB, Eckstein RP, Riley JW, Lunzer MR. Prolonged hepatic cholestasis after flucloxacillin therapy. Med J Aust 1989; 151 (11–12):701–5.

      95 95 Teixeira M, Macedo S, Batista T, Martins S, Correia A, Matos LC. Flucloxacillin‐induced hepatotoxicity‐association with HLA‐B*5701. Rev Assoc Med Bras (1992). 2020; 66(1):12–7.

      96 96 Nicoletti P, Aithal GP, Chamberlain TC, Coulthard S, Alshabeeb M, Grove JI, et al. Drug‐induced liver injury due to flucloxacillin: relevance of multiple human leukocyte antigen alleles. Clin Pharmacol Ther 2019; 106(1):245–53.

      97 97 Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I, Floratos A, et al. HLA‐B*5701 genotype is a major determinant of drug‐induced liver injury due to flucloxacillin. Nat Genet 2009; 41(7):816–9.

      98 98 Gath J, Charles B, Sampson J, Smithurst B. Pharmacokinetics and bioavailability of flucloxacillin in elderly hospitalized patients. J Clin Pharmacol 1995; 35(1):31–6.

      99 99 Thijssen HH, Wolters J. The metabolic disposition of flucloxacillin in patients with impaired kidney function. Eur J Clin Pharmacol 1982; 22(5):429–34.

      100 100 Dekker SJ, Dohmen F, Vermeulen NPE, Commandeur JNM. Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: inhibition of CYP3A‐catalysed hydroxylation by sulfaphenazole. Br J Pharmacol. 2019; 176(3):466–77.

      101 101 Lakehal F, Dansette PM, Becquemont L, Lasnier E, Delelo R, Balladur P, et al. Indirect cytotoxicity of flucloxacillin toward human biliary epithelium via metabolite formation in hepatocytes. Chem Res Toxicol 2001; 14(6):694–701.

      102 102 Huwyler J, Wright MB, Gutmann H, Drewe J. Induction of cytochrome P450 3A4 and P‐glycoprotein by the isoxazolyl‐penicillin antibiotic flucloxacillin. Curr Drug Metab 2006; 7(2):119–26.

      103 103 Jenkins RE, Meng X, Elliott VL, Kitteringham NR, Pirmohamed M, Park BK. Characterisation of flucloxacillin and 5‐hydroxymethyl flucloxacillin haptenated HSA in vitro and in vivo. Proteomics Clin Appl 2009; 3(6):720–9.

      104 104 Waddington JC, Ali SE, Penman SL, Whitaker P, Hamlett J, Chadwick A, et al. Cell membrane transporters facilitate the accumulation of hepatocellular flucloxacillin protein adducts: implication in flucloxacillin‐induced liver injury. Chem Res Toxicol 2020, 33(12):2939–2943.

      105 105 Cyr M, Brown CS. Nefazodone: its place among antidepressants. Ann Pharmacother 1996; 30(9):1006–12.

      106 106 DeVane CL, Grothe DR, Smith SL. Pharmacology of antidepressants: focus on nefazodone. J Clin Psychiatry 2002; 63 Suppl 1:10–7.

      107 107 Eison AS, Eison MS, Torrente JR, Wright RN, Yocca FD. Nefazodone: preclinical pharmacology of a new antidepressant. Psychopharmacol Bull 1990; 26(3):311–5.

      108 108 Ellingrod VL, Perry PJ. Nefazodone: a new antidepressant. Am J Health Syst Pharm 1995; 52 (24):2799–812.

      109 109 Goldberg RJ. Nefazodone: a novel antidepressant. Psychiatr Serv 1995; 46 (11):1113–4.

      110 110 Aranda‐Michel J, Koehler A, Bejarano PA, Poulos JE, Luxon BA, Khan CM, et al. Nefazodone‐induced liver failure: report of three cases. Ann Intern Med 1999; 130 (4 Pt 1):285–8.

      111 111 Conway CR, McGuire JM, Baram VY. Nefazodone‐induced liver failure. J Clin Psychopharmacol 2004; 24(3):353–4.

      112 112 Eloubeidi MA, Gaede JT, Swaim MW. Reversible nefazodone‐induced liver failure. Dig Dis Sci 2000; 45(5):1036–8.

      113 113 Lucena MI, Andrade RJ, Gomez‐Outes A, Rubio M, Cabello MR. Acute liver failure after treatment with nefazodone. Dig Dis Sci 1999; 44 (12):2577–9.

      114 114 Schirren CA, Baretton G. Nefazodone‐induced acute liver failure. Am J Gastroenterol 2000; 95(6):1596–7.

      115 115van Battum PL, van de Vrie W, Metselaar HJ, Verstappen VM, Zondervan PE, de Man RA. Acute liver failure ascribed to nefazodone: importance of 'postmarketing surveillance' for recently introduced drugs. Ned Tijdschr Geneeskd 2000; 144 (41):1964–7.

      116 116 Choi S. Nefazodone (Serzone) withdrawn because of hepatotoxicity. CMAJ 2003; 169 (11):1187.

      117 117 Edwards IR. Withdrawing drugs: nefazodone, the start of the latest saga. Lancet 2003; 361 (9365):1240.

      118 118 Stewart DE. Hepatic adverse reactions associated with nefazodone. Can J Psychiatry 2002; 47(4):375–7.

      119 119 Kalgutkar AS, Vaz AD, Lame ME, Henne KR, Soglia J, Zhao SX, et al. Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone‐imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab Dispos 2005; 33(2):243–53.

      120 120 Dykens JA, Jamieson JD, Marroquin LD, Nadanaciva S, Xu JJ, Dunn MC, et al. in vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol Sci 2008; 103(2):335–45.

      121 121 Zhang J, Doshi U, Suzuki A, Chang CW, Borlak J, Li AP, et al. Evaluation of multiple mechanism‐based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: results from 152 marketed drugs with known liver injury profiles. Chem Biol Interact 2016; 255:3–11.

      122 122 Kostrubsky SE, Strom SC, Kalgutkar AS, Kulkarni S, Atherton J, Mireles R, et al. Inhibition of hepatobiliary transport as a predictive method for clinical hepatotoxicity of nefazodone. Toxicol Sci 2006; 90(2):451–9.

      123 123 Oorts M, Baze A, Bachellier P, Heyd B, Zacharias T, Annaert P, et al. Drug‐induced cholestasis risk assessment in sandwich‐cultured human hepatocytes. Toxicol in vitro 2016; 34:179–86.

      124 124 Saab L, Peluso J, Muller CD, Ubeaud‐Sequier G. Implication of hepatic transporters (MDR1 and MRP2) in inflammation‐associated idiosyncratic drug‐induced hepatotoxicity investigated by microvolume cytometry. Cytometry A 2013; 83(4):403–8.

      125 125 Markham A, Keam SJ. Obeticholic acid: first global approval. Drugs 2016; 76 (12):1221–6.

      126 126 Jhaveri MA, Kowdley KV. New developments in the treatment of primary biliary cholangitis ‐ role of obeticholic acid. Ther Clin Risk Manag 2017; 13:1053–60.

      127 127 Jindal A, Gupta A, Sarin S. Obeticholic acid in primary biliary cholangitis. N Engl J Med 2016; 375 (20):e41.

      128 128 Jones DE. Obeticholic acid for the treatment of primary biliary cirrhosis. Expert Rev Gastroenterol Hepatol 2016; 10(10):1091–1099.

      129 129 Silveira MG, Lindor KD. Obeticholic acid and budesonide for the treatment of primary biliary cirrhosis. Expert Opin Pharmacother 2014; 15(3):365–72.

      130 130 Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81(5):687–93.

      131 131 Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284 (5418):1365–8.

      132 132 Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999; 3(5):543–53.

      133 133 Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000; 6(3):507–15.

      134 134 Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human