simultaneously when the plants were grown in a hydroponic growth process. Similarly, when subjected to soil irrigation, nanoparticles of CeO2 had a neutral effect on maize plants [79].
On the other hand, the toxicity of AgNPs in P. radiatus and Sorghum bicolor cultivated in the soil system was lacking compared to agar [80]. Most notably, soil parameters are primarily used to regulate plant reactions to soil‐released nanoparticles [81]; for instance, they have demonstrated the non‐toxic effect of ZnONPs in the cultivation of Lepidium sativum with a higher cation exchange level. Also, CuO and ZnO nanoparticles were more toxic for T. aestivum [82]. Such results indicate which soil parameters can attenuate nanoparticles' likely phytotoxicity. The analysis of key risk assessment factors in the tripartite interaction of nanoparticles with microbial communities of plants, soils, and soils would understand the environmental effects of nanoparticles released into the agroecosystem (Table 2.1). Indeed, essential soil factors are mainly controlled by soil type, pH, organic matter, soil moisture, behaviour, and toxicity of nanoparticles manufactured for plants and microbes.
References
1 1 Yang, L. and Watts, D.J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158 (2): 122–132.
2 2 Kovochich, M., Xia, T., Xu, J. et al. (2005). Principles and procedures to assess nanoparticles. Environ. Sci. Technol. 39 (5): 1250–1256.
3 3 Sayes, C.M., Fortner, J.D., Guo, W. et al. (2004). The differential cytotoxicity of water‐soluble fullerenes. Nano Lett. 4 (10): 1881–1887.
4 4 Daroczi, B., Kari, G., McAleer, M.F. et al. (2006). In vivo radioprotection by the fullerene nanoparticle DF‐1 as assessed in a zebrafish model. Clin. Cancer Res. 12 (23): 7086–7091.
5 5 Hoffmann, M., Holtze, E.M., and Wiesner, M.R. (2007). Reactive oxygen species generation on nanoparticulate material. In: Environmental Nanotechnology: Applications and Impacts of Nanomaterials (eds. M.R. Wiesner and J.Y. Bottero), 155–203. New York: McGraw Hill.
6 6 Joner, E.J., Hartnik, T., and Amundsen, C.E. (2008). Environmental fate and ecotoxicity of engineered nanoparticles. In: Norwegian Pollution Control Authority Report No. TA 2304/2007 (eds. E.J. Joner, T. Hartnik and C.E. Amundsen), 1–64. Norway: Bioforsk.
7 7 Lyon, D.Y., Thill, A., Rose, J., and Alvarez, P.J.J. (2007). Ecotoxicological impacts of nanomaterials. In: Environmental Nanotechnology: Applications and Impacts of Nanomaterials (eds. M.R. Wiesner and J.Y. Bottero), 445–479. New York: McGraw Hill.
8 8 Abbott, L.C. and Maynard, A.D. (2010). Exposure assessment approaches for engineered nanomaterials. Risk Anal. 30 (11): 1634–1644.
9 9 Maynard, A.D. (2007). Nanotechnology: the next big thing, or much ado about nothing? Ann. Occup. Hyg. 51 (1): 1–12.
10 10 Schulenburg, M. (2008). Nanoparticles – Small Things, Big Effects Opportunities and Risks. Berlin: Federal Ministry of Education and Research.
11 11 Bottero, J.Y., Rose, J., and Wiesner, M.R. (2006). Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr. Environ. Assess. Manage. 2 (4): 391–395.
12 12 Macanas, J., Ruiz, P., Alonso, A. et al. (2011). Ion‐exchange assisted synthesis of polymer‐stabilized metal nanoparticles. In: Solvent Extraction and Ion Exchange: A Series of Advances, vol. 20 (ed. S.G. AK), 1–43. Boca Raton, FL: CRC Press‐Taylor & Francis Group.
13 13 Vatta, L.L., Sanderson, R.D., and Koch, K.R. (2006). Magnetic nanoparticles: properties and potential applications. Pure Appl. Chem. 78 (9): 1793–1801.
14 14 Belotelov, V.I., Perlo, P., and Zvezdin, A.K. (2005). Magneto optics of granular materials and new optical methods of magnetic nanoparticles and nanostructures imaging. In: Metal‐Polymer Nanocomposites, vol. 8 (eds. L. Nicolais and G. Carotenuto), 201–240. New York: Wiley.
15 15 Qiao, R., Zhang, X.L., Qiu, R. et al. (2007). Fabrication of superparamagnetic cobalt nanoparticles‐embedded block copolymer microcapsules. J. Phys. Chem. C 111 (6): 2426–2429.
16 16 Oberdorster, E. (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112 (10): 1058–1062.
17 17 Fortner, J.D., Lyon, D.Y., Sayes, C.M. et al. (2005). C60 in water: nanocrystal formation and microbial response. Environ. Sci. Technol. 39 (11): 4307–4316.
18 18 Wiesner, M.R., Lowry, G.V., Alvarez, P. et al. (2006). Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40 (14): 4336–4345.
19 19 Tang, Y.J., Ashcroft, J.M., Chen, D. et al. (2007). Charge‐associated effects of fullerene derivatives on microbial structural integrity and central metabolism. Nano Lett. 7 (3): 754–760.
20 20 Zhu, X., Zhu, L., Li, Y. et al. (2007). Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 26 (5): 976–979.
21 21 Cheng, J., Flahaut, E., and Shuk, H.C. (2007). Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ. Toxicol. Chem. 26 (4): 708–716.
22 22 Smith, C.J., Shaw, B.J., and Handy, R.D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol. 82 (2): 94–109.
23 23 Roberts, A.P., Mount, A.S., and Seda, B. (2007). In vivo biomodification of lipid‐coated carbon nanotubes by Daphnia magna. Environ. Sci. Technol. 41 (8): 3028–3029.
24 24 Oberdorster, E., Zhu, S., Blickley, T.M. et al. (2006). Ecotoxicology of carbon‐based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44 (6): 1112–1120.
25 25 Panyala, N.R., Pena‐Mendez, E.M., and Havel, J. (2008). Silver or silver nanoparticles: a hazardous threat to the environment and human health. J. Appl. Biomed. 6 (3): 117–129.
26 26 Rana, S. and Kalaichelvan, P.T. (2011). Antibacterial effects of metal nanoparticles. Adv. Biotech 2 (2): 21–23.
27 27 Griffitt, R.J., Weil, R., Hyndman, K.A. et al. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 41 (23): 8178–8186.
28 28 Cioffi, N., Ditaranto, N., Torsi, L. et al. (2005). Synthesis, analytical characterization and bioactivity of Ag and Cu nanoparticles embedded in poly‐vinyl‐methyl‐ketone films. Anal. Bioanal. Chem. 382 (8): 1912–1918.
29 29 Pan, Y., Neuss, S., Leifert, A. et al. (2007). Size‐dependent cytotoxicity of gold nanoparticles. Small 3 (11): 1941–1949.
30 30 Braydich‐Stolle, L., Hussain, S., Schlager, J.J., and Hofmann, M.C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88 (2): 412–419.
31 31 Hussain, S.M., Javorina, A.K., Schrand, A.M. et al. (2006). The interaction of manganese nanoparticles with PC‐12 cells induces dopamine depletion. Toxicol. Sci. 92 (2): 456–463.
32 32 Chen, X. and Schluesener, H.J. (2008). Nanosilver: a nanoproduct in medical application. Toxicol. Lett. 176 (1): 1–12.
33 33 Hogstrand, C. and Wood, C.M. The toxicity of silver to marine fish. In: Proceedings of the 4th International Conference on Transport, Fate and Effects of Silver in the Environment (eds. A.W. Andren and T.W. Bober), 109–112. Lexington Kentucky, USA: University of Kentucky; McMaster University, Hamilton,Ontario,Canada.
34 34 Eisler, R. (1996). A review of silver hazards to plants and animals. In: Proceedings of the 4th International Conference on Transport Fate and Effects of Silver in the Environment (eds. A.W. Andren and T.W. Bober), 143–144. Madison, WI: University of Vasconia sea giant institute Madison.
35 35 Throback, I.N., Johansson, M., Rosenquist, M. et al. (2007). Silver (Ag+) reduces denitrification and induces