Группа авторов

Emerging Technologies for Healthcare


Скачать книгу

autonomous operation for 24 hours.

      Body sensor networks is the one of the significant technologies used to monitor the patients by means of tiny wireless sensor nodes in the body. Security of such IoT devices poses a major issue in privacy of the patients. A secure system for healthcare called BSN-care is addressed in [8].

      Securing the privacy of patients is of utmost importance for IoT-based healthcare systems. Various research is going on this area. In [9], a big data storage system to secure the privacy of the patients is addressed. The medical data generated is encrypted before it is transferred to the data storage. This system is designed as a self-adaptive one where it can operate on emergency and normal conditions.

      Various systems are developed to take care of the personal needs while traveling which can aid in travel and tourism. An intelligent travel recommender system called ProTrip is developed in [10]. This system helps travelers who are on strict diet and having long-term diseases in getting proper nutritional value foods according to the climatic conditions. This system supports the IoT healthcare system for food recommendation.

      The issues in the security and privacy of IoT-based healthcare system are a major concern. Most of the system is based on cloud computing for IoT solutions which has certain limitations based on economic aspects, storage of data, geographical architecture, etc. To overcome this limitation, a Fog computing approach is addressed in [11] and authors explores the integration of traditional cloud-based structure and Cloud Fog services in interoperable healthcare solutions.

      For IoT-based healthcare system efficient authorization and authentication is required for securing the data. Such a system is addressed in [12]. It was found that the proposed model is more secure than the centralized delegation-based architecture as it uses a secure key management between the smart gateway and sensor nodes.

      Recent security attacks for the private data and integrity of data is a matter of concern for the IoT healthcare systems. Conventional methods of security solutions are for the protection of data during patient communication but it does not offer the security protection during the data conversion into the cipher. A secure data collection scheme for IoT healthcare system called SecureData scheme is proposed in [13], and the experimental results showed that this scheme is efficient in protecting security risks.

      The data generated through IoT devices are prone to security threats. Maintaining the privacy of the patient data is of utmost importance. Traditional encryption schemes cannot be applied on healthcare data due to the limitations in the properties of digital data. A chaos-based encryption cryptosystem to preserve the privacy of patients is proposed in [15]. Random images are generated by the cryptosystem which ensures highest security level for the patient data. The performance of this model was found to be better than other encryption schemes.

      The trends of IoT in healthcare sectors and the future scope for research is discussed in [16]. A sensor-based communication architecture and authentication scheme for IoT-based healthcare systems is addressed in [17]. Various research articles on big data analytics, and IoT in healthcare is addressed in [18].

      With the enormous research happening in the field of IoT applications in healthcare sectors, new dimensions to the healthcare treatments and hospital services can be expected in the coming years.

      Various developments have occurred in the healthcare systems in the recent past. Some of the advancements are discussed in this section.

      1.2.1 Health Monitoring

      These devices can be interconnected by IoT devices so that the healthcare workers and immediate family members can monitor the parameters and they will be alerted for any emergency situation. Such devices are very helpful for elderly persons who are living alone as they get immediate medical attention if there are variations in their body parameters.

      1.2.2 Smart Hospitals

      Smart hospitals mean all the equipment in the hospitals are connected through IoTs in addition to real-time monitoring system for the patients. Managing the assets in the hospitals can be made in a smarter way by means of IoTs. The equipment like oxygen cylinders, wheelchairs, and nebulizers can be tracked on real-time basis and made available when in need.

      Now, in the current Covid-19 scenario, we have observed how the hospitals were managing the resources in a smarter way. The number of occupied beds and available bed status is updated on real-time basis, and the data is made available in various digital platforms.

      Cleanliness and hygiene also can be maintained in an efficient manner. Environmental conditions like humidity and temperature can be monitored continuously and the spread of diseases can be prevented efficiently.

      1.2.3 Tracking Patients

      These smart devices not only track the patient’s health parameters but also alert the patients for their consultation schedules. It also keeps the records of previous medications or medical history which aids the doctors in right diagnosis and treatments.

      The availability of patient’s data on IoT devices helps the hospitals to track the patients and provide quick medical attention in an efficient manner.

      1.2.4 Transparent Insurance Claims

      Healthcare insurance policy holders are increasing on a yearly basis. Due to the large number of policy holders who aims to get maximum profits by claiming the insurance, false claims are also increasing. Due to the presence of IoT devices which tracks the patient data, insurance companies can easily detect any fraud in the claims.

      These devices not only help the patients to manage their insurance policies but also help the insurance companies to track the health of patients,