James K. Peckol

Introduction to Fuzzy Logic


Скачать книгу

is often all too easy to hack together a one‐off crisp logic application that appears to work. Trying to replicate a million or more copies of such a design (with elastic timing constraints, variable path impedance, or flexible data values) very quickly runs into the real‐world gremlins that are waiting for us. A solid, secure, robust, reliable design must always be based on the proven underlying theory, a thorough problem analysis, and a disciplined development approach. Such methods are growing increasingly important as we continue to push the envelope of designs that are impacting the daily lives of an ever‐increasing number of people.

      This book takes a developer's perspective to first refreshing the basics of classic or crisp logic, teaching the concept of fuzzy logic, then applying such concepts to approximate reasoning systems such as threshold logic and perceptrons. This book examines, in detail, each of the important theoretical and practical aspects that one must consider when designing today's applications.

      These applications must include the following:

      1 The formal hardware and software development process (stressing safety, security, and reliability)

      2 The digital and software architecture of the system

      3 The physical world interface to external analog and digital signals

      4 The debug and test throughout the development cycle and finally

      5 Improving the system performance

      Introduction and Background

      The Introduction gives an overview of the topics covered in the book. These topics include some of the vocabulary that is part of the fuzzy logic, threshold logic, and perceptron worlds. The Introduction also includes a bit of background and history, applications where such tools can be used, and a few contemporary examples.

      History and Infrastructure

      With the preliminary background set, the next two chapters introduce some of the early work that provided the foundation for fuzzy logic, the reasoning process for solving problems, and a brief review of the essentials of classic or crisp logic.

      Chapter 1 presents some of the early views on reality, learning, logic, and reasoning that founded the first classic laws of thought that ultimately laid the foundations for fuzzy logic. Working from these fundamentals, the chapter introduces and discusses the basic mathematics and set theory underlying crisp and fuzzy logic and examines the similarities and differences between the two forms of logic. The chapter concludes with the introduction and study of fuzzy membership functions.

      Chapter 2 opens with an introduction of the fundamental concepts of crisp logic underlying a classic algebra or algebraic system. The study follows with a review of the basics of Boolean algebra. We then introduce the concept and purpose of a truth table and demonstrate algebraic proofs using such tables. We then learn that the entries in such a table are called minterms and that a minterm is a binary aggregate of logical 0s and 1s that sets the logical value, true or false, of single cell entries in truth tables.

      Sets, Sets, and More Sets

      Building on the work of those who opened the path and set the trail for us, the next two chapters introduce and study the fundamental concepts, properties, and operations of sets and set membership first for classic sets and then for fuzzy sets.

      Chapter 3 introduces the fundamental concept of sets, focusing on what are known as classical or crisp sets. The chapter begins with an introduction of some of the elementary vocabulary and terminology and then reviews the principle definitions and concepts of the theory of ordinary or classical sets. The concepts of subsets and set membership are then presented and explored. Set membership naturally leads to the concept of membership functions.

      With the fundamentals of sets and set membership established, we study the basic theory of classic or crisp logic. We then move to the details of the properties and logical operations of using crisp sets and of developing crisp membership applications. Crisp sets and crisp membership applications are a prelude to the introduction of fuzzy logic, fuzzy sets, fuzzy set membership, and threshold logic.

      Chapter 4 moves to the fuzzy world introducing and focusing on what are termed fuzzy sets. The chapter reviews some of the principle definitions and concepts of the theory of ordinary or classical sets and illustrates how these are identical to fuzzy subsets when the degree of membership in the subset is expanded to include all real numbers in the interval [0.0, 1.0]. We learned that vagueness and imprecision are common in everyday life. Very often, the kind of information we encounter may be placed into two major categories: statistical and nonstatistical.

      The fundamental fuzzy terminology is presented and followed by the introduction of the basic fuzzy set properties and applications. With properties and applications understood, the focus shifts to membership functions and the grade of membership. Up to this point, data has been expressed in numerical form. Often a graphical presentation is a more effective and convenient tool. Such graphs can be expressed in both linear and curved graphical format.

      Linguistic Variables and Hedges

      Chapter 5, we begin this chapter with a look at early symbols and sounds and their evolution to language and knowledge. Building on such origins, we introduce the concept of sets and move into the worlds of formal set theory, Boolean algebra and introduce crisp variables.

      From the crisp world, we migrate into the fuzzy world and introduce the concept and term linguistic variable as a variable whose values are words or phrases in a natural (or synthetic) language rather than real numbers. Such words are interpreted as representing labels on fuzzy subsets within a universe of discourse, which refers to a collection of entities that are currently being discussed, analyzed, or examined.

      We conclude with a discussion of the purpose, creation and use, and manipulation of hedges.

      Fuzzy Inference and Approximate Reasoning

      Chapter 6 introduces the concepts of fuzzy inference and approximate reasoning. As part of developing an effective reasoning methodology, we introduce and demonstrate the fundamental concepts and various relationships of equality, containment and entailment, conjunction and disjunction, and union and intersection among sets and subsets.

      We stress that for engineers, reasoning is an essential and significant element of effective design and the successful solution to problems. We also introduce and demonstrate a variety of relationships between and