Richard M. Pashley

Applied Colloid and Surface Chemistry


Скачать книгу

Principles of Colloid and Surface Chemistry, 3rd edn, New York: Marcel Dekker. Hunter, R. J. (1987) Foundations of Colloid Science, Vol. 1, Oxford: Clarendon Press. Hunter, R. J. (1993) Introduction to Modern Colloid Science, Oxford: Oxford Sci. Publ. Israelachvili, J, N. (1985) Intermolecular and Surface Forces, London: Academic Press. Ninham, B. W. and P. Lo Nostro (2010) Molecular Forces and Self Assembly, Cambridge: Cambridge University Press. Shaw, D. J. (1992) Introduction to Colloid and Surface Chemistry, 4th edn, Oxford, Boston: Butterworth‐Heinemann

       A. DISPERSED PARTICLE SIZES

       Schematic illustration of Dispersed particle sizes.

       B. SOME HISTORICAL NOTES ON COLLOID AND SURFACE CHEMISTRY

      John Freind at Oxford (1675–1728) was the first person to realise that intermolecular forces are of shorter range than gravity.

      Young (1805) estimated range of intermolecular forces at about 0.2 nm. Turns out to be something of an underestimate.

      Young and Laplace (1805) derived meniscus curvature equation.

      Brown (1827) observed the motion of fine particles in water.

      Johannes D. van der Waals (1837–1923) was a schoolmaster who produced a doctoral thesis on the effects of intermolecular forces on the properties of gases (1873).

      Thomas Graham (1860) recognised the existence of colloids in the mid‐19th century.

      Schulze and Hardy (1882–1900) studied the effects of electrolytes on colloid stability.

      Perrin (1903) used the terms ‘lyophobic’ and ‘lyophilic’ to denote irreversible and reversible coagulation.

      Ostwald (1907) developed the concepts of ‘disperse phase’ and ‘dispersion medium’.

      Gouy and Chapman (1910–1913) both independently used the Poisson‐Boltzmann equations to describe the diffuse electrical double‐ layer formed at the interface between a charged surface and an aqueous solution.

      Ellis and Powis (1912–1915) introduced the concept of the critical zeta potential for the coagulation of colloidal solutions.

      London (1920) first developed a theoretical basis for the origin of intermolecular forces.

      Debye (1920) used polarisability of molecules to estimate attractive forces.

      Debye and Huckel (1923) used a similar approach to Gouy and Chapman to calculate the activity coefficients of electrolytes.

      Stern (1924) introduced the concept of specific ion adsorption at surfaces.

      Kallmann and Willstatter (1932) calculated van der Waals force between colloidal particles using summation procedure and suggested that a complete picture of colloid stability could be obtained on the basis of electrostatic double‐layer and van der Waals forces.

      Bradley (1932) also independently calculated van der Waals forces colloidal particles.

      Hamaker (1932) and de Boer (1936) calculated van der Waals forces on macroscopic bodies using summation method.

      Derjaguin, Landau, Verwey, and Overbeek (1941–1948) developed the DLVO theory of colloid stability.

      Lifshitz (1955–1960) developed a complete quantum electrodynamic (continuum) theory for the van der Waals interaction between macroscopic bodies.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7R+4UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA AABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwg IGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiN