H. (2016). Vehicle positioning using 5G millimeter‐wave systems. IEEE Access 4: 6964–6973.
28 28 Gersdorf, B. and Freese, U. (2013). A Kalman filter for odometry using a wheel mounted inertial sensor. International Conference on Informatics in Control, Automation and Robotics (ICINCO) (1), 388–395.
29 29 Jimenez, A.R., Seco, F., Prieto, J.C., and Guevara, J. (2010). Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction and a foot‐mounted IMU. IEEE Workshop on Positioning Navigation and Communication (WPNC), Dresden, Germany (11–12 March 2010).
30 30 Mezentsev, O. and Collin, J. (2019). Design and performance of wheel‐mounted MEMS IMU for vehicular navigation. IEEE International Symposium on Inertial Sensors & Systems, Naples, FL, USA (1–5 April 2019).
31 31 Zheng, Y., Liu, Q., Chen, E. et al. (2014). Time series classification using multi‐channels deep convolutional neural networks. International Conference on Web‐Age Information Management, Macau, China (16–18 June 2014), pp. 298–310.
32 32 Hannink, J., Kautz, T., Pasluosta, C.F. et al. (2017). Mobile stride length estimation with deep convolutional neural networks. IEEE Journal of Biomedical and Health Informatics 22 (2): 354–362.
33 33 Wagstaff, B., Peretroukhin, V., and Kelly, J. (2017). Improving foot‐mounted inertial navigation through real‐time motion classification. IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan (18–21 September 2017).
34 34 Fan, L., Wang, Z., and Wang, H. (2013). Human activity recognition model based on decision tree. IEEE International Conference on Advanced Cloud and Big Data, Nanjing, China (13–15 December 2013).
35 35 Wang, Y. and Shkel, A.M. (2021) Learning‐based floor type identification in ZUPT‐aided pedestrian inertial navigation. IEEE Sensors Conference 5.
36 36 Askari, S., Jao, C.‐S., Wang, Y., and Shkel, A.M. (2019). Learning‐based calibration decision system for bio‐inertial motion application. IEEE Sensors Conference, Montreal, Canada (27–30 October 2019).
37 37 Anguita, D., Ghio, A., Oneto, L. et al. (2012). Human activity recognition on smartphones using a multiclass hardware‐friendly support vector machine. In: International Workshop on Ambient Assisted Living, 216–223. Berlin, Heidelberg: Springer‐Verlag.
38 38 Ordóñez, F.J. and Roggen, D. (2016). Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16 (1): 115.
39 39 Olsson, F., Rantakokko, J., and Nygards, J. (2014). Cooperative localization using a foot‐mounted inertial navigation system and ultrawideband ranging. IEEE International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea (27–30 October 2014).
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.