Группа авторов

Emergency Medical Services


Скачать книгу

to complete the defibrillation of the unconscious patient prior to proceeding. If external defibrillation is available, external pads can be placed after disconnecting the monitor from the electrode belt, or the vest can be removed altogether. Prior to removing the vest, the battery should be removed to prevent an inadvertent shock.

      Pericardiocentesis may be indicated during resuscitation for pulseless electrical activity (PEA). If the PEA is the result of cardiac tamponade, pericardiocentesis may reverse that condition. Cardiac tamponade may be difficult to diagnose in the out‐of‐hospital setting. Tamponade may be suspected based on the patient’s clinical presentation. Prior to cardiac arrest, the patient may develop Beck’s triad of jugular venous distension, hypotension, and muffled heart sounds. If available, portable ultrasound can be used to detect tamponade.

      Successful pericardiocentesis has been performed in the out‐of‐hospital setting by both EMS physicians and critical care transport teams [30, 31]. It should be used as a final resort when all other therapies have failed [32]. For procedure details, see Chapter 40. Aspiration of blood that does not clot suggests removal from the pericardial space, as opposed to intraventricular blood. Successful pericardiocentesis and the correction of the tamponade physiology should lead to restoration of spontaneous circulation.

      Technological advances in both electrical and mechanical cardiac support devices mean that more people are living with them, including people in their homes. Thus, familiarity by EMS clinicians is important to effect optional care and safe transport.

      Critical patients who are being supported by IABPs, ECMO, or nonportable VADs require special attention by expert teams when they must be transferred from one facility to another. Among the team members must be a specialist in managing the support device. Planning is key to moving patients safely and effectively.

      EMS clinicians are likely to encounter patients with portable VADs, even if infrequently. Ideally, they would know of such patients in their communities before they are summoned for an emergency condition. In any case, they should be able to rapidly identify the presence of a VAD and the need for determination of whether or not pulsatile flow is expected. Patients with VAD‐related problems often require fluid resuscitation, unless the issue is a rare pump failure or power failure. In those cases, the dedicated hand pump should be used to restore blood flow or CPR initiated if the VAD has no hand pump. For problems not immediately indicating a VAD malfunction, such as stroke or GI bleeding, the patient should be treated as he or she would be in the absence of the VAD. It is prudent to attempt to get the patient to the hospital where the VAD was placed if feasible and appropriate.

      EMS clinicians should be aware when their patient has a pacemaker or ICD. If the patient’s problem relates to a cardiac dysrhythmia, it is important to assess the ICD or pacemaker function. With a magnet, function can be suspended if it is emitting inappropriate, excessive electrical impulses or shocks.

      EMS physicians should be capable of performing pericardiocentesis. Although ultrasound may be a helpful adjunct, the procedure can done using anatomical landmarks.

      We acknowledge T.J. Doyle, MD, MPH, author of this chapter in the prior edition.

      1 1 Blumen IJ. Principles and Direction of Air Medical Transport Advancing Air and Ground Critical Care Transport Medicine. Salt Lake City, UT: Air Medical Physician Association, 2015.

      2 2 Arrow International. An Introduction to Intra‐Aortic Balloon Pumping. Reading, PA: Arrow International, 2005.

      3 3 Air and Surface Transport Nurses Association. Mechanically assisted cardiovascular transport. Flight and Ground Transport Nursing Core Curriculum. Air and Surface Transport Nurses Association, Denver, CO, 2006. pp. 205–10.

      4 4 Burzotta A, Carlo T, Doshi SN, et al. Impella ventricular support in clinical practice: Collaborative viewpoint from a European expert user group. Int J Cardiol. 2015; 201:684–91.

      5 5 ABIOMED, Inc. Impella Program Protocols & Tools. Danvers, MA: ABIOMED, Inc., 2019.

      6 6 Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra‐aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2017; 69:278–87.

      7 7 Lemaire A, Anderson MB, Lee LY, et al. The Impella device for acute mechanical circulatory support in patients in cardiogenic shock. Ann Thorac Surg. 2014; 97:133–8.

      8 8 Ergle K, Parto P, Krim SR. Percutaneous ventricular assist devices: a novel approach in the management of patients with acute cardiogenic shock. Ochsner J. 2016; 16:243–9.

      9 9 Lamhaut L, Hutin A, Deutsch J, et al. Extracorporeal cardiopulmonary resuscitation (ECPR) in the prehospital setting: an illustrative case of ECPR performed in the Louvre Museum. Prehosp Emerg Care. 2017; 21:386–9.

      10 10 Burns BJ, Habig K, Reid C, et al. Logistics and safety of extracorporeal membrane oxygenation in medical retrieval. Prehosp Emerg Care. 2011; 15:246–53.

      11 11 Mecham CC. Prehospital assessment and management of patients with ventricular assist devices. Prehosp Emerg Care. 2013; 17:223–9.

      12 12 Meyers TJ, Dasse KA, Macris MP, Poirer VL, Cloy MJ, Frazier OH. Use of a left ventricular assist device in an outpatient setting. ASAIO J 2001; 47:590–5.

      13 13 Long B, Robertson J, Koyfman A, Brady W. Left ventricular assist devices and their complications: a review for emergency clinicians. Am J Emerg Med. 2019; 37:1562–70.

      14 14 Hoshi H, Shinshi T, Takatani S. Third‐generation blood pumps with mechanical non‐contact magnetic bearings. Artif Organ. 2006; 30:324–28.

      15 15 Geisen U, Heilmann C, Beyersdorf F, et al. Non‐surgical bleeding in patients with ventricular assist devices could be explained by acquired Von Willebrand disease. Eur J Cardiothorac Surg. 2008; 33:679–84.

      16 16 Kato TS, Schulze PC, Yang J, et al. Pre‐operative and post‐operative risk factors associated with neurologic complications in patients with advanced heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2012; 31:1–8.

      17 17 Califano S, Pagani FD, Malani PN. Left ventricular assist device associated infections. Infect Dis Clin North Am. 2012; 26:77–87.

      18 18 Kiernan MS, Pham DC, DeNofrio D, Kapur NK. Management of HeartWare left ventricular assist device thrombosis using intracavitary thrombolytics. J Thorac Cardiovasc Surg. 2011; 142:712–4.

      19 19 Felix SE, Martina JR, Kirkels JH, et al. Continuous flow left ventricular assist device support in patients with advanced heart failure: Points of interest for daily management. Eur J Heart Fail. 2012; 14: 351–6.

      20 20 Goebel M, Tainter C, Kahn C, et al. An urban 9‐1‐1 system’s experience with left ventricular assist device patients. Prehosp Emerg Care. 2018; 23:560–5.

      21 21 Schweiger M, Vierecke J, Stiegler P, Prenner G, Tscheliessnigg KH, Wasler A. Prehospital care of left ventricular assist device patients by emergency medical services. Prehosp Emerg Care. 2012; 16:560–3.

      22 22 Boyle A. Arrhythmias in patients with ventricular assist devices. Curr Opin Cardiol. 2012; 27:13–18.

      23 23 Maisel WH, Moynahan M, Zuckerman BD, et al. Pacemaker and ICD generator malfunctions analysis of Food and Drug Administration Annual Reports. JAMA. 2006; 295:1901–6.

      24 24 Mulpuru SK, Madhavan M, McLeod CJ, Cha YM, Friedman PA. Cardiac pacemakers: function, troubleshooting, and management: part 1 of a 2‐part series. J Am Coll Cardiol. 2017; 69:189–210.

      25 25 Kenny T. The Nuts and Bolts of Implantable Device Therapy Pacemakers. Hoboken, NJ: Wiley & Sons, Ltd, 2015. Chapter 13, Pacemaker