Группа авторов

Emergency Medical Services


Скачать книгу

1995; 50:79–80.

      42 42 Walters JA, Tan DJ, White CJ, Gibson PG, Wood‐Baker R, Walters EH. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev.. 2014:CD001288.

      43 43 Ram FS, Rodriguez‐Roisin R, Granados‐Navarrete A, Garcia‐Aymerich J, Barnes NC. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006:CD004403.

      44 44 Osadnik CR, Tee VS, Carson‐Chahhoud KV, Picot J, Wedzicha JA, Smith BJ. Non‐invasive ventilation for the management of acute hypercapnic respiratory failure due to exacerbation of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017; 7:CD004104.

      45 45 Celli BR. Update on the management of COPD. Chest. 2008; 133:1451–62.

      46 46 Borlaug BA. Defining HFpEF: where do we draw the line? Eur Heart J 2016; 37:463–5.

      47 47 Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics‐2017 update: a report from the American Heart Association. Circulation. 2017; 135:e146–e603.

      48 48 McDonagh TA, Morrison CE, Lawrence A, et al. Symptomatic and asymptomatic left‐ventricular systolic dysfunction in an urban population. Lancet. 1997; 350:829–33.

      49 49 Echouffo‐Tcheugui JB, Bishu KG, Fonarow GC, Egede LE. Trends in health care expenditure among US adults with heart failure: The Medical Expenditure Panel Survey 2002‐2011. Am Heart J. 2017; 186:63–72.

      50 50 Neesse A, Jerrentrup A, Hoffmann S, et al. Prehospital chest emergency sonography trial in Germany: a prospective study. Eur J Emerg Med. 2012; 19:161–6.

      51 51 Kallio T, Kuisma M, Alaspaa A, Rosenberg PH. The use of prehospital continuous positive airway pressure treatment in presumed acute severe pulmonary edema. Prehosp Emerg Care. 2003; 7:209–13.

      52 52 Thompson J, Petrie DA, Ackroyd‐Stolarz S, Bardua DJ. Out‐of‐hospital continuous positive airway pressure ventilation versus usual care in acute respiratory failure: a randomized controlled trial. Ann Emerg Med. 2008; 52:232–41, e241.

      53 53 Masip J, Roque M, Sanchez B, Fernandez R, Subirana M, Exposito JA. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta‐analysis. JAMA. 2005; 294:3124–30.

      54 54 Naughton MT, Rahman MA, Hara K, Floras JS, Bradley TD. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995; 91:1725–31.

      55 55 Levy PD, Bellou A. Acute heart failure treatment. Curr Emerg Hosp Med Rep. 2013; 1112–21.

      56 56 Engelberg S, Singer AJ, Moldashel J, Sciammarella J, Thode HC, Henry M. Effects of prehospital nitroglycerin on hemodynamics and chest pain intensity. Prehosp Emerg Care. 2000; 4:290–3.

      57 57 Levy P, Compton S, Welch R, et al. Treatment of severe decompensated heart failure with high‐dose intravenous nitroglycerin: a feasibility and outcome analysis. Ann Emerg Med. 2007; 50:144–52.

      58 58 Wilson SS, Kwiatkowski GM, Millis SR, Purakal JD, Mahajan AP, Levy PD. Use of nitroglycerin by bolus prevents intensive care unit admission in patients with acute hypertensive heart failure. Am J Emerg Med. 2017; 35:126–31.

      59 59 Patrick C, Ward B, Anderson J, et al. Feasibility, effectiveness and safety of prehospital intravenous bolus dose nitroglycerin in patients with acute pulmonary edema. Prehosp Emerg Care. 2020:1–7.

      60 60 Wang K, Samai K. Role of high‐dose intravenous nitrates in hypertensive acute heart failure. Am J Emerg Med 2020; 38:132–7.

      61 61 Hoffman JR, Reynolds S. Comparison of nitroglycerin, morphine and furosemide in treatment of presumed pre‐hospital pulmonary edema. Chest. 1987; 92:586–93.

      62 62 Peacock WF, Hollander JE, Diercks DB, Lopatin M, Fonarow G, Emerman CL. Morphine and outcomes in acute decompensated heart failure: an ADHERE analysis. Emerg Med. 2008; 25:205–9.

      63 63 Gray A, Goodacre S, Seah M, Tilley S. Diuretic, opiate and nitrate use in severe acidotic acute cardiogenic pulmonary oedema: analysis from the 3CPO trial. QJM. 2010; 103:573–81.

      64 64 Kline JA, Courtney DM, Kabrhel C, et al. Prospective multicenter evaluation of the pulmonary embolism rule‐out criteria. J Thromb Haemos. 2008; 6:772–80.

      65 65 Lee JA, Zierler BK, Zierler RE. The risk factors and clinical outcomes of upper extremity deep vein thrombosis. Vasc Endovascular Surg. 2012; 46:139–44.

      66 66 Kosuge M, Kimura K, Ishikawa T, et al. Electrocardiographic differentiation between acute pulmonary embolism and acute coronary syndromes on the basis of negative T waves. Am J Cardio. 2007; 99:817–21.

      67 67 Courtney DM, Kline JA. Prospective use of a clinical decision rule to identify pulmonary embolism as likely cause of outpatient cardiac arrest. Resuscitation. 2005; 65:57–64.

      68 68 Perrott J, Henneberry RJ, Zed PJ. Thrombolytics for cardiac arrest: case report and systematic review of controlled trials. Ann Pharmacother. 2010; 44:2007–13.

      69 69 Abu‐Laban RB, Christenson JM, Innes GD, et al. Tissue plasminogen activator in cardiac arrest with pulseless electrical activity. N Engl J Med. 2002; 346:1522–8.

      70 70 Bintcliffe O, Maskell N. Spontaneous pneumothorax. BMJ. 2014; 348:g2928.

      71 71 Dickson RL, Gleisberg G, Aiken M, et al. Emergency medical services simple thoracostomy for traumatic cardiac arrest: postimplementation experience in a ground‐based suburban/rural emergency medical services agency. J Emerg Med. 2018; 55:366–71.

      72 72 Hannon L, St Clair T, Smith K, et al. Finger thoracostomy in patients with chest trauma performed by paramedics on a helicopter emergency medical service. Emerg Med Australa. 2020; 32:650–6.

       Vincent N. Mosesso, Jr and Angus M. Jameson

      Oxygenation and ventilation are critical life‐sustaining functions, and their evaluation and management are primary components of emergency medical services (EMS) care. While these two parameters are related, they are distinct physiological functions that require independent assessment. The focus of this chapter is on diagnostic aids and management, and EMS physicians and other clinicians must develop and maintain expert physical examination skills for the proper assessment of these important processes. The astute EMS clinician will observe demeanor, mentation, ability to speak, ease and volume of air exchange, work of breathing, upper or lower airway obstruction, pulmonary congestion, and central and peripheral cyanosis. These findings should be considered together with diagnostic test results to determine the status of oxygenation and ventilation in an individual patient, whether intervention is needed, and, if so, which treatment modalities are indicated.