Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications


Скачать книгу

rel="nofollow" href="#fb3_img_img_18f4e62d-6a9e-5be2-b5e4-668b872a6e88.png" alt="t element-of left-bracket a comma b right-parenthesis"/>, f Subscript n Baseline left-parenthesis t right-parenthesis equals f left-parenthesis t Superscript plus Baseline right-parenthesis, we obtain

parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis t Superscript plus Baseline right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f left-parenthesis t right-parenthesis minus f Subscript n Baseline left-parenthesis t right-parenthesis parallel-to plus parallel-to f Subscript n Baseline left-parenthesis t Superscript plus Baseline right-parenthesis minus f left-parenthesis t Superscript plus Baseline right-parenthesis parallel-to less-than-or-slanted-equals 2 v a r Subscript a Superscript b Baseline left-parenthesis f minus f Subscript n Baseline right-parenthesis comma

      which tends to zero as n right-arrow infinity. Hence, f element-of upper B upper V Subscript a Superscript plus Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      We end this section with the Helly's choice principle for Banach space‐valued functions due to C. S. Hönig. See [127, Theorem I.5.8].

      

      Theorem 1.34 (Theorem of Helly): Let be a BT and consider a sequence of elements of , with , for all , and such that there exists , with for all and all . Then, and . Moreover, if , with , for all , then and .

      Proof. Consider a division d colon a equals t 0 less-than t 1 less-than midline-horizontal-ellipsis less-than t Subscript StartAbsoluteValue d EndAbsoluteValue Baseline equals b and let y Subscript i Baseline element-of upper F, with parallel-to y Subscript i Baseline parallel-to less-than-or-slanted-equals 1, for i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue. Then, for all n element-of double-struck upper N, we have

StartLayout 1st Row 1st Column vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 yi less-than-or-slanted-equals 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha n left-parenthesis right-parenthesis ti of alpha alpha n left-parenthesis right-parenthesis t minus minus i 1 yi 2nd Row 1st Column Blank 2nd Column plus vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha n left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis tiyi times times left-bracket right-bracket minus minus of alpha alpha n left-parenthesis right-parenthesis t minus minus i 1 of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 yi comma EndLayout

      where the first member on the right‐hand side of the inequality is smaller than upper M, since upper S upper B left-parenthesis alpha Subscript n Baseline right-parenthesis less-than-or-slanted-equals upper M. Moreover, by hypothesis, given epsilon greater-than 0, there is upper N greater-than 0 such that, for all n greater-than-or-slanted-equals upper N, n element-of double-struck upper N, vertical-bar vertical-bar vertical-bar vertical-bar times times left-bracket right-bracket minus minus of alpha alpha n left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis tiyi ̲ less-than-or-slanted-equals StartFraction epsilon Over 2 StartAbsoluteValue d EndAbsoluteValue EndFraction comma for ModifyingBelow i With ̲ equals i comma i minus 1 period Hence, for all n greater-than-or-slanted-equals upper N,

vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 yi less-than-or-slanted-equals upper M plus epsilon

      and we conclude the proof of the first part. The second part follows analogously.

      For more details about functions of bounded variation, the reader may want to consult [68], for instance.

      Throughout this section, we consider functions alpha colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis and f colon left-bracket a comma b right-bracket right-arrow upper X, where upper X and upper Y are Banach spaces.

      1.3.1 Definitions

      

      Definition 1.35: Let left-bracket a comma b right-bracket be a compact interval.

      1 Any set of point‐interval pairs such that and for , is called a tagged division of . In this case, we write , where denotes the set of all tagged divisions of .

      2 Any subset of a tagged division of is a tagged partial division of and, in this case, we write .

      3 A gauge on a set is any function . Given a gauge on , we say that is a ‐fine tagged partial division, whenever for , that is,whenever

      Before presenting the definition of any integral