J. Clin. Biochem. 27: 110–120.
128 Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9: 654–659.
129 van der Pol, E., Boing, A.N., Harrison, P., Sturk, A., and Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64: 676–705.
130 Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Perez-Hernandez, D., Vazquez, J., Martin-Cofreces, N., Martinez-Herrera, D.J., Pascual-Montano, A., Mittelbrunn, M., and Sanchez-Madrid, F. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4: 2980.
131 Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910–918.
132 Wang, J., De Veirman, K., Faict, S., Frassanito, M.A., Ribatti, D., Vacca, A., and Menu, E. (2016). Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J. Pathol. 239: 162–173.
133 Watson, C.N., Belli, A., and Pietro, D.I. (2019). Small non-coding RNAs: New class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front. Genet. 10: 364.
134 Welslau, M., Dieras, V., Sohn, J.H., Hurvitz, S.A., Lalla, D., Fang, L., Althaus, B., Guardino, E., and Miles, D. (2014). Patient-reported outcomes from EMILIA, a randomized phase 3 study of trastuzumab emtansine (T-DM1) versus capecitabine and lapatinib in human epidermal growth factor receptor 2-positive locally advanced or metastatic breast cancer. Cancer 120: 642–651.
135 Witwer, K.W., Buzas, E.I., Bemis, L.T., Bora, A., Lasser, C., Lotvall, J., Nolte-’t Hoen, E.N., Piper, M.G., Sivaraman, S., Skog, J., Thery, C., Wauben, M.H., and Hochberg, F. (2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2.
136 Witwer, K.W., Soekmadji, C., Hill, A.F., Wauben, M.H., Buzas, E.I., Di Vizio, D., Falcon-Perez, J.M., Gardiner, C., Hochberg, F., Kurochkin, I.V., Lotvall, J., Mathivanan, S., Nieuwland, R., Sahoo, S., Tahara, H., Torrecilhas, A.C., Weaver, A.M., Yin, H., Zheng, L., Gho, Y.S., Quesenberry, P., and Thery, C. (2017). Updating the MISEV minimal requirements for extracellular vesicle studies: Building bridges to reproducibility. J Extracell Vesicles 6: 1396823.
137 Xouri, G. and Christian, S. (2010). Origin and function of tumor stroma fibroblasts. Semin. Cell Dev. Biol. 21: 40–46.
138 Yan, S., Jiang, Y., Liang, C., Cheng, M., Jin, C., Duan, Q., Xu, D., Yang, L., Zhang, X., Ren, B., and Jin, P. (2018). Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J. Cell Biochem. 119: 4113–4119.
139 Yanez-Mo, M., Siljander, P.R., Andreu, Z., Zavec, A.B., Borras, F.E., Buzas, E.I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colas, E., Cordeiro da Silva, A., Fais, S., Falcon-Perez, J.M., Ghobrial, I.M., Giebel, B., Gimona, M., Graner, M., Gursel, I., Gursel, M., Heegaard, N.H., Hendrix, A., Kierulf, P., Kokubun, K., Kosanovic, M., Kralj-Iglic, V., Kramer-Albers, E.M., Laitinen, S., Lasser, C., Lener, T., Ligeti, E., Line, A., Lipps, G., Llorente, A., Lotvall, J., Mancek-Keber, M., Marcilla, A., Mittelbrunn, M., Nazarenko, I., Nolte-’t Hoen, E.N., Nyman, T.A., O’Driscoll, L., Olivan, M., Oliveira, C., Pallinger, E., Del Portillo, H.A., Reventos, J., Rigau, M., Rohde, E., Sammar, M., Sanchez-Madrid, F., Santarem, N., Schallmoser, K., Ostenfeld, M.S., Stoorvogel, W., Stukelj, R., Van Der Grein, S.G., Vasconcelos, M.H., Wauben, M.H., and De Wever, O. (2015). Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 4: 27066.
140 Yao, B., Qu, S., Hu, R., Gao, W., Jin, S., Liu, M., and Zhao, Q. (2019). A panel of miRNAs derived from plasma extracellular vesicles as novel diagnostic biomarkers of lung adenocarcinoma. FEBS Open. Bio. 9: 2149–2158.
141 Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes. Dev. 17: 3011–3016.
142 Yokoi, A., Matsuzaki, J., Yamamoto, Y., Yoneoka, Y., Takahashi, K., Shimizu, H., Uehara, T., Ishikawa, M., Ikeda, S.I., Sonoda, T., Kawauchi, J., Takizawa, S., Aoki, Y., Niida, S., Sakamoto, H., Kato, K., Kato, T., and Ochiya, T. (2018). Integrated extracellular microRNA profiling for ovarian cancer screening. Nat. Commun. 9: 4319.
143 Yoshioka, Y., Kosaka, N., Konishi, Y., Ohta, H., Okamoto, H., Sonoda, H., Nonaka, R., Yamamoto, H., Ishii, H., Mori, M., Furuta, K., Nakajima, T., Hayashi, H., Sugisaki, H., Higashimoto, H., Kato, T., Takeshita, F., and Ochiya, T. (2014). Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 5: 3591.
144 You, Y., Shan, Y., Chen, J., Yue, H., You, B., Shi, S., Li, X., and Cao, X. (2015). Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis. Cancer Sci. 106: 1669–1677.
145 Yu, Y., Xiao, C.H., Tan, L.D., Wang, Q.S., Li, X.Q., and Feng, Y.M. (2014). Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br. J. Cancer 110: 724–732.
146 Zeng, Y. and Cullen, B.R. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 32: 4776–4785.
147 Zhang, H. (2016). Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer. Drug. Des. Devel. Ther. 10: 3867–3872.
148 Zhou, C.F., Ma, J., Huang, L., Yi, H.Y., Zhang, Y.M., Wu, X.G., Yan, R.M., Liang, L., Zhong, M., Yu, Y.H., Wu, S., and Wang, W. (2019). Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene 38: 1256–1268.
149 Zhuang, J., Lu, Q., Shen, B., Huang, X., Shen, L., Zheng, X., Huang, R., Yan, J., and Guo, H. (2015). TGFbeta1 secreted by cancer-associated fibroblasts induces epithelial-mesenchymal transition of bladder cancer cells through lncRNA-ZEB2NAT. Sci. Rep. 5: 11924.
4 Circulating miRNAs as Biomarkers of Toxic Heavy Metal Exposure
Alexandra N. Nail, Ana P. Ferragut Cardoso, Mayukh Banerjee, and J. Christopher States
Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY
Metals and the Focus of This Chapter
Metals are defined as elements that readily form cations and are composed of a lattice of positive ions surrounded by a cloud of delocalized electrons. Heavy metals have played an important role in human civilization for thousands of years. Commonly defined by their specific density (greater than 5.0 g/cm3), heavy metals occur naturally in the environment. Five heavy metals, namely arsenic (which is classified as a metalloid but is often grouped within heavy metals), lead, mercury, cadmium, and chromium, are of considerable public health importance because of their high degree of toxicity (Jarup 2003). In fact arsenic, lead, mercury, and cadmium are ranked within the top seven substances in the Agency for Toxic Substances and Disease Registry’s Substance Priority List, which considers a combination of frequency, toxicity, and potential for human exposure when classifying substances of concern (ATSDR 2019). While metals often occur naturally in the environment, anthropogenic activities such as mining, smelting, industrial production, and agriculture can lead to their increased mobilization and can alter their chemical form, thereby also altering their toxicity. Human activities thus contribute to environmental and occupational exposure to arsenic, lead, mercury, cadmium, and chromium. Exposure to these metals can cause a myriad of health problems such as multiple organ damage, cellular damage, cardiovascular and metabolic diseases, and cancer (Rehman et al. 2018).
In general, concentrations of metals in biological samples are used as biomarkers for assessing the level of concern with metal intoxication. As technologies continue to improve in molecular toxicology, biomarker possibilities have expanded. This chapter discusses circulating