Брайан Кристиан

Алгоритмы для жизни: Простые способы принимать верные решения


Скачать книгу

эту сложность с оптимальной остановкой игрой в отсутствие информации.

      Этот принцип, вероятно, далек от большинства поисков квартиры, спутника жизни или того же секретаря. Но попробуйте на секунду представить, что у нас есть некий объективный критерий оценки (например, если бы каждый претендент на должность секретаря прошел бы обязательный экзамен на скорость печатания, результат которого выражался бы в перцентилях аналогично современным тестам SAT, GRE или LSAT). Таким образом, баллы каждого соискателя наглядно продемонстрируют его уровень среди всех прошедших тест: машинистка 51-го перцентиля всего лишь выше среднего уровня, в то время как машинистка 75-го перцентиля превосходит троих испытуемых из четырех и т. д.

      Допустим, наша подборка соискателей репрезентативна и никоим образом не искажена и была выбрана случайно. Более того, предположим, что скорость печатания – это единственный критерий, по которому мы отбираем кандидатов на должность. Тогда мы приходим к тому, что математики называют полной информацией, и ситуация меняется. «Чтобы установить стандарт, не нужно накапливать опыт, – говорится в основной статье по этой проблеме, написанной еще в 1966 году, – и удачный выбор порой делается мгновенно». Иными словами, если соискателю 95-го перцентиля случается стать первым, кого мы оцениваем, мы мгновенно понимаем, что с уверенностью можем принять его на работу – при условии, конечно, что мы не рассматриваем наличие соискателя 96-го перцентиля в подборке.

      И вот в чем загвоздка. Если опять же наша цель – найти наилучшего кандидата на должность, то нам по-прежнему необходимо взвесить вероятность существования более сильного претендента. Однако наличие у нас полной информации дает возможность вычислить эти шансы напрямую. Например, вероятность того, что следующий соискатель будет из 96-го перцентиля или выше, всегда будет 1 к 20. Таким образом, решение о том, когда следует прекратить поиски, сводится исключительно к тому, сколько еще кандидатов нам осталось просмотреть. Полная информация подразумевает, что нам не нужно так уж тщательно обдумывать свои действия. Вместо этого можно применить пороговое правило, руководствуясь которым мы можем немедленно принять на работу кандидата выше определенного уровня перцентиля. И нам не нужно просматривать первоначальную группу кандидатов, чтобы установить этот порог. Но стоит тем не менее учитывать, сколько еще соискателей остаются доступными.

      Математика показывает, что, когда в подборке остается еще много кандидатов, легко пройти мимо хорошего претендента в надежде найти кого-то еще лучше. Но по мере уменьшения шансов вы должны быть готовы нанять того, кто окажется просто чуть выше среднего уровня. Это всем знакомое, хотя и не слишком вдохновляющее явление: в случае скудного выбора нам приходится снижать требования. Так же верно и обратное: если в море полно рыбы, то планку требований можно поставить выше. Но в обоих случаях, что особенно важно, именно математика говорит насколько.

      Самый