центр Солнца. Этот круг посредством второй сферы поворачивается вокруг оси зодиака, и Евдокс предполагал, что его узлы на эклиптике совершают очень медленное движение вперед, а не обратно, как лунные узлы. Годовое движение Солнца предполагалось совершенно единообразным, то есть Евдокс, по всей видимости, отвергал замечательное открытие, сделанное Метоном и Евктемоном примерно за 60—70 лет до того, а именно что Солнцу требуется не одно и то же время, чтобы описать четыре квадранта своей орбиты между равноденствиями и солнцестояниями[84].
Весьма примечательно, что, хотя Евдокс таким образом проигнорировал открытие изменчивой орбитальной скорости Солнца, он считал фактом совершенно воображаемую идею, что Солнце за год проходит не по эклиптике, а по кругу, наклоненному к ней под небольшим углом. Согласно Симпликию (с. 493), «Евдокс и те, что были до него» пришли к такому выводу, наблюдая, что Солнце в летнее и зимнее солнцестояние не всегда восходит в одной и той же точке горизонта. Возможно, древним наблюдателям не пришло в голову, что и эти грубые определения азимута восходящего Солнца, и наблюдения с гномоном недостаточно точны; без астрономических приборов они заметили, что ни Луна, ни пять планет в своем движении не ограничены эклиптикой (или, как они называли ее, кругом, проходящим через середину зодиака), и почему только одно Солнце не должно смещаться по широте, если все остальные блуждающие звезды делают это настолько явно? Это воображаемое отклонение Солнца от эклиптики часто встречается у античных авторов. Так, Гиппарх, отрицающий существование данного феномена, цитирует следующий фрагмент из «Зеркала» – утерянной книги Евдокса о кругах и созвездиях сферы: «Кажется, что Солнце также совершает возвраты (τροπὰς, солнцестояния) в разные места, но гораздо менее заметно» (комментарий к «Явлениям» Евдокса и Арата)[85]. Каков, по мнению Евдокса, был наклон солнечной орбиты или период обращения узлов, нам неизвестно, и, вероятно, Евдокс имел не слишком точные представления о данном предмете. Плиний указывает наклон в Г, а точку максимальной широты – в 29-м градусе Овна («Естественная история», XXII, 16)[86]. С другой стороны, Теон Смирнский, который излагает вопрос подробнее, утверждает, опираясь на авторитет Адраста (жившего около 100 г. и. э.), что наклон составляет ½° и что Солнце возвращается на ту же широту через 365⅛ дня, так что тени гномона становятся одной длины, как он говорит, притом что Солнцу требуются 365¼ дня, чтобы вернуться в ту же точку равноденствия или солнцестояния, и 365½ дня, чтобы вернуться на то же расстояние от нас. Из этого следует, что он считал, будто солнечные узлы совершают попятное движение (а не прямое, как полагал Евдокс) и за период 365¼: ⅛ = 2922 года («Астрономия», с. 91, 108, 175, 263, 314). Скиапарелли показывает, что с наклоном ½° между осями второй и третьей сферы точки солнцестояния должны колебаться в пределах 2°28′. Это, конечно, влияет на продолжительность тропического года, и вполне возможно, что вся теория солнечной широты первоначально возникла