Скотт Бембенек

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали


Скачать книгу

для свободного падения и движения по наклонной плоскости. Что же, оказывается, гипотезы Галилео были верны.

      К данному моменту вас не должно удивлять, что скорость объекта, катящегося по наклоненной плоскости[19], увеличивается по мере снижения высоты. Максимальная скорость достигается в самой низкой точке, а время падения (время, которое требуется, чтобы скатиться к основанию наклонной плоскости) не зависит от массы, но непосредственно связано с начальной высотой, как и для (общего случая) маятника, и для свободно падающего объекта.

      Так, для всех трех систем результаты одинаковы из-за того, что природа требует сохранения энергии. Кстати, мы не обсуждали подробно, что же в действительно влечет за собой это самое сохранение энергии; похоже, я немного затянул. Тем не менее для обсуждаемых систем у нас есть два фундаментальных типа отношений между высотой и скоростью:

      – более низкая высота (от отправной точки) означает, что объект перемещается быстрее – это значит, что его наивысшая скорость будет достигнута в самой низкой точке;

      – чем выше начальная высота, тем больше времени будет затрачено на падение, за исключением изохронного маятника, у которого время падения одинаково для каждой высоты.

      Давайте посмотрим на другую версию эксперимента Галилео с маятником.

      Повторное рассмотрение маятника

      В эксперименте с «прерванным маятником» Галилео раскрыл еще больше последствий сохранения энергии. Вспомните, что маятник Галилео был просто свинцовым шаром, весящим одну-две унции, подвешенным на нити. Теперь вообразите маятник, спущенный от гвоздя, вбитого в стену, – маятник, который может свободно качаться из одной стороны в другую. От его точки покоя (где он висит вертикально) мы перемещаем маятник, скажем, вправо на некоторую начальную высоту и затем выпускаем его, не придавая ему ускорения[20].

      Поскольку маятник качается справа налево, мы видим, что он достигает своей конечной высоты. Галилео, вероятно, делал это много раз на различных начальных высотах и каждый раз получал один и тот же результат: начальная высота всегда равняется конечной. Ну, честно говоря, конечная высота, вероятно, немного ниже из-за некоторого сопротивления воздуха, но Галилео вывел, что пренебрежение этим приведет к равным высотам, что и было ключевым в этом исследовании.

      Но тогда Галилео добавил к оригинальному эксперименту поворот. Теперь вообразите те же условия, за исключением того, что на этот раз мы забиваем гвоздь в стену таким образом, что струна неизбежно столкнется с ним, поскольку маятник качается справа налево (рис. 2.4). Хотя колебание маятника изменились из-за гвоздя, мы опять понимаем, что начальная высота и конечная равны. Однако что будет, если мы поменяем положение гвоздя? Это не имеет значения. Нить просто зацепится за гвоздь, колебание изменится, и маятник достигнет своей конечной высоты, которая (как и прежде) совпадет с начальной высотой.

      Рис. 2.4.