Группа авторов

Wetland Carbon and Environmental Management


Скачать книгу

forested wetland assimilation system in Louisiana. Ecological Engineering, 34(1), 7–22. https://doi.org/10.1016/j.ecoleng.2008.05.004

      34 van Breemen, N. (1995). How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10(7), 270–275. https://doi.org/10.1016/0169‐5347(95)90007‐1

      35 Bridgham, S. D., & Richardson, C. J. (2003). Endogenous versus exogenous nutrient control over decomposition and mineralization in North Carolina peatlands. Biogeochemistry, 65, 151–178. https://doi.org/10.1023/A:1026026212581

      36 Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26(4), 889–916. https://doi.org/10.1672/0277‐5212(2006)26[889:TCBONA]2.0.CO;2

      37 Bridgham, S. D., Cadillo‐Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1–22. https://doi.org/10.1111/gcb.12131

      38 Brinson, M. M., Lugo, A. E., & Brown, S. (1981). Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics, 12, 123–161. https://doi.org/doi.org/10.1146/annurev.es.12.110181.001011

      39 Brooks, M. L., Meyer, J. S., & McKnight, D. M. (2007). Photooxidation of wetland and riverine dissolved organic matter: Altered copper complexation and organic composition. Hydrobiologia, 579(1), 95–113. https://doi.org/10.1007/s10750‐006‐0387‐6

      40 Brown, S. L., Gouslbra, C. S., & Evans, M. G. (2019). Controls on fluvial carbon efflux from eroding peatland catchments. Hydrological Processes, 33(3), 361–371. https://doi.org/10.1002/hyp.13329

      41 Bruhn, D., Møller, I. M., Mikkelsen, T. N., & Ambus, P. (2012). Terrestrial plant methane production and emission. Physiologia Plantarum, 144(3), 201–209. https://doi.org/10.1111/j.1399‐3054.2011.01551.x

      42 Burd, K., Tank, S. E., Dion, N., Quinton, W. L., Spence, C., Tanentzap, A. J., & Olefeldt, D. (2018). Seasonal shifts in export of DOC and nutrients from burned and unburned peatland‐rich catchments, Northwest Territories, Canada. Hydrology and Earth System Sciences, 22(8), 4455–4472. https://doi.org/10.5194/hess‐22‐4455‐2018

      43 Burgin, A. J., & Hamilton, S. K. (2008). NO3–‐driven SO42– production in freshwater ecosystems: Implications for N and S cycling. Ecosystems, 11(6), 908–922. https://doi.org/10.1007/s10021‐008‐9169‐5

      44 Butman, D., & Raymond, P. A. (2011). Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience, 4(12), 839–842. https://doi.org/10.1038/ngeo1294

      45 Cabezas, A., Comín, F. A., & Walling, D. E. (2009). Changing patterns of organic carbon and nitrogen accretion on the middle Ebro floodplain (NE Spain). Ecological Engineering, 35(10), 1547–1558. https://doi.org/10.1016/j.ecoleng.2009.07.006

      46 Cai, W.‐J. (2011). Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science, 3(1), 123–145. https://doi.org/10.1146/annurev‐marine‐120709‐142723

      47 Cai, W.‐J., & Wang, Y. (1998). The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4), 657–668. https://doi.org/10.4319/lo.1998.43.4.0657

      48 Cao, F., Tzortziou, M., Hu, C., Mannino, A., Fichot, C. G., Del Vecchio, R., et al. (2018). Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sensing of Environment, 205(April 2017), 151–165. https://doi.org/10.1016/j.rse.2017.11.014

      49 Caplan, J. S., Hager, R. N., Megonigal, J. P., & Mozdzer, T. J. (2015). Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environmental Research Letters, 10(11), 115006. https://doi.org/10.1088/1748‐9326/10/11/115006

      50 Carey, E., & Taillefert, M. (2005). The role of soluble Fe(III) in the cycling of iron and sulfur in coastal marine sediments. Limnology and Oceanography, 50(4), 1129–1141. https://doi.org/10.4319/lo.2005.50.4.1129

      51 Carlson, K. M., Goodman, L. K., & May‐Tobin, C. C. (2015). Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environmental Research Letters, 10(7), 74006. https://doi.org/10.1088/1748‐9326/10/7/074006

      52 Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., & Feller, I. C. (2014). Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 723–727. https://doi.org/10.1073/pnas.1315800111

      53  Chambers, L. G., Osborne, T. Z., & Reddy, K. R. (2013). Effect of salinity‐altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: a laboratory experiment. Biogeochemistry. https://doi.org/10.1007/s10533‐013‐9841‐5

      54 Chambers, R. M., & Odum, W. E. (1990). Porewater oxidation, dissolved phosphate and the iron curtain: Iron‐phosphorus relations in tidal freshwater marshes. Biogeochemistry, 10, 37–52. https://doi.org/10.1007/BF00000891

      55 Chanton, J. P., Martens, C. S., & Kelley, C. A. (1989). Gas transport from methane‐saturated, tidal freshwater and wetland sediments. Limnology and Oceanography, 34(5), 807–819. https://doi.org/10.4319/lo.1989.34.5.0807

      56 Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., et al. (2008). Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Global Biogeochemical Cycles, 22(4), 1–11. https://doi.org/10.1029/2008GB003274

      57 Chapin, C. T., Bridgham, S. D., & Pastor, J. (2004). pH and nutrient effects on above‐ground net primary production in a Minnesota, USA bog and fen. Wetlands, 24(1), 186–201. https://doi.org/10.1672/0277‐5212(2004)024[0186:PANEOA]2.0.CO;2

      58 Chapman, S. K., Hayes, M. A., Kelly, B., & Langley, J. A. (2019). Exploring the oxygen sensitivity of wetland soil carbon mineralization. Biology Letters, 15(1), 20180407. https://doi.org/10.1098/rsbl.2018.0407

      59 Chen, C. T. A., Huang, T. H., Chen, Y. C., Bai, Y., He, X., & Kang, Y. (2013). Air‐sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10, 6509–6544.