D. L., Day, J. W., & McKellar Jr., H. N. (2000). Twenty more years of marsh and estuarine flux studies: Revisiting Nixon (1980). In: M. Weinstein & D. A. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 391–423). Dordrecht, Netherlands: Kluwer Academic Publishing.
61 Chin, Y. P., Traina, S. J., Swank, C. R., & Backhus, D. (1998). Abundance and properties of dissolved organic matter in pore waters of a freshwater wetland. Limnology and Oceanography, 43(6), 1287–1296. https://doi.org/10.4319/lo.1998.43.6.1287
62 Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4), 1111. https://doi.org/10.1029/2002GB001917
63 Christensen, D. (1984). Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments. Limnology and Oceanography, 29(1), 189–191. https://doi.org/10.4319/lo.1984.29.1.0189
64 Clay, G. D., Worrall, F., & Fraser, E. D. G. (2009). Effects of managed burning upon dissolved organic carbon (DOC) in soil water and runoff water following a managed burn of a UK blanket bog. Journal of Hydrology, 367(1–2), 41–51. https://doi.org/10.1016/j.jhydrol.2008.12.022
65 Cleary, J., Roulet, N. T., & Moore, T. R. (2005). Greenhouse gas emissions from Canadian peat extraction, 1990–2000: A life‐cycle analysis. Ambio, 34(6), 456–461. https://doi.org/10.1579/0044‐7447‐34.6.456
66 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon cycle. Ecosystems, 10(1), 172–185.
67 Colmer, T. D. (2003). Long‐distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant, Cell and Environment, 26, 17–36.
68 Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., et al. (2011). Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Global Change Biology, 17(11), 3392–3404. https://doi.org/10.1111/j.1365‐2486.2011.02496.x
69 Conner, W. H., & Day, J. W. (1991). Leaf litter decomposition in three Louisiana freshwater forested wetland areas with different flooding regimes. Wetlands, 11(2), 303–312. https://doi.org/10.1007/BF03160855
70 Cornwell, J. C., Kemp, W. M., & Kana, T. M. (1999). Denitrification on coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecology, 33, 41–54. https://doi.org/10.1023/A:1009921414151
71 Cornwell, J. C., Owens, M. S., Staver, L. W., & Stevenson, J. C. (2020). Tidal marsh restoration at Poplar Island I: Transformation of estuarine sediments into marsh soils. Wetlands, 40. 1673–1686. https://doi.org/10.1007/s13157‐020‐01294‐5
72 Courtwright, J., & Findlay, S. E. G. (2011). Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands, 31(2), 239–249. https://doi.org/10.1007/s13157‐011‐0156‐9
73 Couwenberg, J., Dommain, R., & Joosten, H. (2010). Greenhouse gas fluxes from tropical peatlands in south‐east Asia. Global Change Biology, 16(6), 1715–1732. https://doi.org/10.1111/j.1365‐2486.2009.02016.x
74 Covey, K. R., & Megonigal, J. P. (2019). Methane production and emissions in trees and forests. New Phytologist, 222(1), 35–51. https://doi.org/10.1111/nph.15624
75 Craft, C., Megonigal, P., Broome, S., Stevenson, J., Cornell, J., Zheng, L., et al. (2003). The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecological Applications, 13(5), 1417–1432. https://doi.org/10.1890/02‐5086
76 Crill, P. M., Martikainen, P. J., Nykanen, H., & Silvola, J. (1994). Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biology and Biochemistry, 26(10), 1331–1339. https://doi.org/10.1016/0038‐0717(94)90214‐3
77 Cui, J., Li, Z., Liu, Z., Ge, B., Fang, C., Zhou, C., & Tang, B. (2014). Physical and chemical stabilization of soil organic carbon along a 500‐year cultived soil chronosequence originating from estuarine wetlands: Temporal patterns and land use effects. Agriculture, Ecosystems and Environment, 196(October 2017), 10–20. https://doi.org/10.1016/j.agee.2014.06.013
78 Curtis, P. S., Drake, B. G., Leadley, P. W., Arp, W. J., & Whigham, D. F. (1989). Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia, 78(1), 20–26. https://doi.org/10.1007/BF00377193
79 Cutter, G. A., & Velinsky, D. J. (1988). Temporal variations of sedimentary sulfur in a Delaware salt marsh. Marine Chemistry, 23, 311–327. https://doi.org/10.1016/0304‐4203(88)90101‐6
80 Dai, T., & Wiegert, R. G. (1996). Estimation of the primary productivity of Spartina alterniflora using a canopy model. Ecography, 19, 410–423. https://doi.org/10.1111/j.1600‐0587.1996.tb00006.x
81 Dalal, R. C., & Bridge, B. J. (1996). Aggregation and organic matter storage in sub‐humid and semi‐arid soils. In M. R. Carter & B. A. Stewart (Eds.), Structure and organic matter storage in agricultural soils (pp. 263–307). Boca Raton, FL: CRC Press.
82 Damm, E., Helmke, E., Thoms, S., Schauer, U., Nöthig, E., Bakker, K., & Kiene, R. P. (2010). Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7(3), 1099–1108. https://doi.org/10.5194/bg‐7‐1099‐2010
83 Dang, C., Morrissey, E. M., Neubauer, S. C., & Franklin, R. B. (2019). Novel microbial community composition and carbon biogeochemistry emerge over time following saltwater intrusion in wetlands. Global Change Biology. https://doi.org/10.1111/gcb.14486
84 Darrouzet‐Nardi, A., & Weintraub, M. N. (2014). Evidence for spatially inaccessible labile N from a comparison of soil core extractions and soil pore water lysimetry. Soil Biology and Biochemistry, 73(3), 22–32. https://doi.org/10.1016/j.soilbio.2014.02.010
85 Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V, & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience, 50(8), 667–680. https://doi.org/10.1641/0006‐3568(2000)050[0667:TACMOS]2.0.CO;2
86 Day, F. P. (1982). Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology, 63(November 1980), 670–678. https://doi.org/10.2307/1936787
87 Dean, J. F., Garnett, M. H., Spyrakos, E., & Billett, M. F. (2019). The potential hidden age of dissolved organic carbon exported by