und Rückenmarkfunktionen vermittelst der elektrischen Erscheinungen’, Centralblatt für Physiologie, 4 (1890), pp. 473–6.
85 85 C. S. Sherrington, ‘Notes on the arrangement of some motor fibres in the lumbo-sacral plexus’, Journal of Physiology, 13 (1892), pp. 621–772.
86 86 C. S. Sherrington, ‘On reciprocal innervation of antagonistic muscles: Seventh note’, Proceedings of the Royal Society, B 76 (1905), pp. 160–3; idem, ‘On reciprocal innervation of antagonistic muscles: Eighth note’, Proceedings on the Royal Society, B 76 (1905), pp. 269–97.
87 87 C. S. Sherrington, ‘Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing’, Journal of Physiology, 40 (1910), pp. 28–121.
88 88 A. S. F. Grünbaum and C. S. Sherrington, ‘Observations on the physiology of the cerebral cortex of some of the higher apes (preliminary communication)’, Proceedings of the Royal Sociey, 69 (1902), pp. 206–9.
89 89 Ibid.
90 90 Ibid.
91 91 C. S. Sherrington and C. S. Roy, ‘On the regulation of the blood-supply of the brain’, Journal of Physiology, 11 (1890), p. 106.
92 92 Ibid., p. 105.
93 93 S. Ogawa, T. M. Lee, A. S. Nayak and P. Glynn, ‘Oxygen-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields’, Magnetic Resonance Medicine, 14, no. 1 (1990), pp. 68–78.
94 94 S. Ogawa, T. M. Lee, A. R. Ray and D. W. Tank, ‘Brain magnetic resonance imaging with contrast dependent on blood oxygenation’, Proceedings of the National Academy of Sciences of the United States of America, 87 (1990), pp. 9868–72.
95 95 S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S-G Kim, H. Merkle and K. Ugurbil, ‘Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging’, Proceedings of the National Academy of Sciences of the United States of America, 89 (1992), pp. 5951–5; see also K. K. Kwong, J. W. Belliveau, D. A. Chesler et al., ‘Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation’, Proceedings of the National Academy of Sciences of the United States of America, 89 (1992), pp. 5675–9.
96 96 B. Biswal, F. Z. Yetkin, V. M. Haughton and J. S. Hyde, ‘Functional connectivity in the motor cortex of resting human brain using echo-planar MRI’, Magnetic Resonance Medicine, 34, no. 4 (1995), pp. 537–41.
97 97 M. E. Raichle, A. M. Macleod, A. Z. Snyder, W. J. Powers, D. A. Gusnard and G. L. Shulman, ‘A default mode of brain function’, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001), pp. 676–82.
98 98 M. D. Grecius, V. Kiviniemi, O. Tervonen, V. Vainionpaa, S. Alahuhta, A. L. Reiss and V. Menon, ‘Persistent default-mode network connectivity during light sedation’, Human Brain Mapping, 29, no. 7 (2008), pp. 839–47.
99 99 C. Kennedy, M. H. Des Rosierd, O. Sakurada, M. Reivich, J. W. Jehle and L. Sokoloff, ‘Metabolic mapping of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique’, Proceedings of the National Academy of Sciences of the United States of America, 73, no. 11 (1976), pp. 4230–4.
100 100 M. Reivich, D. Kuhl, A. Wolf, J. Greenberg, M. Phelps, T. Ido, V. Casella, J. Fowler, E. Hoffman, A. Alavi, P. Som and L. Sokoloff, ‘The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man’, Circulation Research 44, no. 1 (1979), pp. 127–37,; see also M. E. Phelps, S. C. Huang, E. J. Hoffman, C. Selin and D. E. Kuhl, ‘Tomographic measurement of local cerebral glucose metabolic rate in humans (F-18)2-fluoro-2-deoxy-D-glucose: validation of method’, Annals of Neurology 6, no. 5 (1979), pp. 371–86.
101 101 L. Elliott, A. R. Knodt, D. Ireland, M. L. Morris, R. Poulton, S. Ramrakha, M. L. Sison, T. E. Moffitt, A. Caspi and R. Ahmad, ‘Hariri: Poor test-retest reliability of task-fMRI: new empirical evidence and a meta-analysis’, bioRxiv (2019 June). doi: https://doi.org/10.1101/681700; S. Noble, D. Scheinost and R. T. Constable, ‘A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis’, Neuroimage, 203 (2019), p. 116157.
102 102 F. Cauda, T. Costa, M. Diano, K. Sacco, S. Duca, G. Geminiani and D. M. Torta, ‘Massive modulation of brain areas after mechanical pain stimulation: a time-resolved FMRI study’, Cerebral Cortex, 24, no. 11 (2014), pp. 2991–3005; J. Gonzalez-Castillo, Z. S. Saad, D. A. Handwerker, S. J. Inati, N. Brenowitz and P. A. Bandettini, ‘Whole-brain, time-locked activation with simple tasks revealed using massive averaging and model-free analysis’, Proceedings of the National Academy of Sciences of the United States of America, 109, no. 14 (2012), pp. 5487–92; J. W. Ibinson and K. M. Vogt, ‘Pain does not follow the boxcar model: temporal dynamics of the BOLD fMRI signal during constant current painful electric nerve stimulation’, Journal of Pain, 14, no. 12 (2013), pp. 1611–19.
103 103 M. R. Bennett, L. Farnell and W. G. Gibson, ‘Quantitative relations between transient BOLD responses, cortical energetics, and impulse firing in different cortical regions’, Journal of Neurophysiology, 122, no. 3 (2019), pp. 1226–37.
104 104 N. J. Maandag, D. Coman, B. G. Sanganahalli, P. Herman, A. J. Smith, H. Blumenfeld, R. G. Shulman and F. Hyder, ‘Energetics of neuronal signaling and fMRI activity’, Proceedings of the National Academy of Sciences of the United States of America, 104, no. 51 (2007), pp. 20546–51; A. J. Smith, H. Blumenfeld, K. L. Behar, D. L. Rothman, R. G. Shulman and F. Hyder, ‘Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI’, Proceedings of the National Academy of Sciences of the United States of America, 99, no. 16 (2002), pp. 10765–70.
105 105 M. R. Bennett, L. Farnell and W. G. Gibson, ‘Quantitative relations between BOLD responses, cortical energetics, and impulse firing’, Journal of Neurophysiology, 119, no. 3 (2018), pp. 979–89.
106 106 F. Hyder, R. K. Fulbright, R. G. Shulman and D. L. Rothman, ‘Glutamatergic function in the resting awake human brain is supported by uniformly high oxidative energy’, Journal of Cerebral Blood Flow & Metabolism, 33, no. 3 (2013), pp. 339–47; F. Hyder, D. L. Rothman and M. R. Bennett, ‘Cortical energy demands of signaling and non-signaling components in brain are conserved across mammalian species and activity levels’, Proceedings of the National Academy of Sciences of the United States of America, 110, no. 9 (2013), pp. 3549–54.
107 107 M. T. Alkire, ‘Loss