Whey protein-based packaging films and coatings. In: Whey Proteins (eds. H.C. Deeth and N. Bansal), 407–437. Elsevier Inc.
32 32 Carvalho, R.A., Santos, T.A., de Azevedo, V.M. et al. (2018). Bio-nanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical and barrier properties. Polym. Int. 67 (4): 386–392.
33 33 Sun, B., Zhang, M., Shen, J. et al. (2019). Applications of cellulose-based materials in sustained drug delivery systems. Curr. Med. Chem. 26 (14): 2485–2501.
34 34 Kalia, S., Dufresne, A., Cherian, B.M. et al. (2011). Cellulose-based bio- and nanocomposites: a review. Int. J. Polym. Sci. 2011: 1–35.
35 35 Zaman, A., Huang, F., Jiang, M. et al. (2020). Preparation, properties, and applications of natural cellulosic aerogels: a review. Energy Built Environ. 1: 60–76.
36 36 Zhang, X., Lin, F., Yuan, Q. et al. (2019). Hydrogen-bonded thin films of cellulose ethers and poly(acrylic acid). Carbohydr. Polym. 215: 58–62.
37 37 Clasen, C. and Kulicke, W.M. (2001). Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog. Polym. Sci. 26: 1839–1919.
38 38 Ma, Q. and Wang, L. (2016). Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins. Sens. Actuators, B 235: 401–407. https://doi.org/10.1016/j.snb.2016.05.107.
39 39 Pérez-Gago, M.B., Fagundes, C., Monteiro, A.R., and Palou, L. (2016). Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose (HPMC)-based edible coatings against Alternaria alternata on cherry tomato fruit. In: IX Simpósio Ibérico Matur e Pós-Colheita, Lisboa, Port 2 a 4 novembro 2016, 107–114.
40 40 Fathi Achachlouei, B. and Zahedi, Y. (2018). Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydr. Polym. 199 (February): 415–425.
41 41 Niu, X., Liu, Y., Song, Y. et al. (2018). Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydr. Polym. 183 (August 2017): 102–109.
42 42 Noorbakhsh-Soltani, S.M., Zerafat, M.M., and Sabbaghi, S. (2018). A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym. 189 (February): 48–55.
43 43 Halim, A.L.A., Kamari, A., and Phillip, E. (2018). Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. Int. J. Biol. Macromol. 120: 1119–1126.
44 44 Sinaga, M.Z.E., Gea, S., Panindia, N., and Sihombing, Y.A. (2018). The preparation of cellulose nanocomposite film from isolated cellulose of corncobs as food packaging. Orient. J. Chem. 34 (1): 562–567.
45 45 Mohammadi, H., Kamkar, A., and Misaghi, A. (2018). Nanocomposite films based on CMC, okra mucilage and ZnO nanoparticles: Physico mechanical and antibacterial properties. Carbohydr. Polym. 181 (August 2017): 351–357.
46 46 Sun, G., Chi, W., Zhang, C. et al. (2019 Sep). Developing a green film with pH-sensitivity and antioxidant activity based on к-carrageenan and hydroxypropyl methylcellulose incorporating Prunus maackii juice. Food Hydrocolloids 94: 345–353.
47 47 Azarifar, M., Ghanbarzadeh, B., Sowti Khiabani, M. et al. (2019). The optimization of gelatin-CMC based active films containing chitin nanofiber and Trachyspermum ammi essential oil by response surface methodology. Carbohydr. Polym. 208 (December 2018): 457–468.
48 48 Yadav, N. and Kaur, R. (2019 Dec). Environment friendly qualitatively responsive ethyl cellulose films as smart food packaging. Mater. Express 9 (7): 792–800.
49 49 El Fawal, G., Hong, H., Song, X. et al. (2020). Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packag. Shelf Life 23.
50 50 Lopez-Polo, J., Silva-Weiss, A., Zamorano, M., and Osorio, F.A. (2020). Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: Food application. Carbohydr. Polym. 231: 1–10.
51 51 Abdou, E.S., Nagy, K.S.A., and Elsabee, M.Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. 99: 1359–1367.
52 52 Marei, N.H., El-Samie, E.A., Salah, T. et al. (2016). Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 82: 871–877.
53 53 Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31 (7): 603–632.
54 54 Mujtaba, M., Morsi, R.E., Kerch, G. et al. (2019). Current advancements in chitosan-based film production for food technology; a review. Int. J. Biol. Macromol. 121: 889–904.
55 55 Yoshida, C.M.P., Borges, V., Maciel, V. et al. (2014). Chitosan biobased and intelligent films : monitoring pH variations. LWT Food Sci. Technol. 55 (1): 83–89.
56 56 Ge, J., Yue, P., Chi, J. et al. (2018). Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids 74: 23–31.
57 57 Elsabee, M.Z. and Abdou, E.S. (2013). Chitosan based edible films and coatings: a review. Mater. Sci. Eng., C 33 (4): 1819–1841.
58 58 Rodríguez-Núñez, J.R., Madera-Santana, T.J., Sánchez-Machado, D.I. et al. (2014). Chitosan/hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. J. Polym. Environ. 22 (1): 41–51.
59 59 Badawy, M.E.I., Rabea, E.I., El-Nouby M, A.M. et al. (2017). Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. Int. J. Fruit Sci. 17 (2): 117–136.
60 60 Halász, K. and Csóka, L. (2018). Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag. Shelf Life 16 (September 2017): 185–193.
61 61 Remedio, L.N., Silva dos Santos, J.W., Vieira Maciel, V.B. et al. (2019). Characterization of active chitosan films as a vehicle of potassium sorbate or nisin antimicrobial agents. Food Hydrocolloids 87 (June 2018): 830–838.
62 62 Wu, C., Sun, J., Lu, Y. et al. (2019). In situ self-assembly chitosan/ɛ-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int. J. Biol. Macromol. 132: 385–392.
63 63 Gates, S.J. and Shukla, A. (2017). Layer-by-layer assembly of readily detachable chitosan and poly(acrylic acid) polyelectrolyte multilayer films. J. Polym. Sci., Part B: Polym. Phys. 55 (2): 127–131.
64 64 Galvis-Sánchez, A.C., Castro, M.C.R., Biernacki, K. et al. (2018). Natural deep eutectic solvents as green plasticizers for chitosan thermoplastic production with controlled/desired mechanical and barrier properties. Food Hydrocolloids 82: 478–489.
65 65 Chabbi, J., Jennah, O., Katir, N. et al. (2018). Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics. Carbohydr. Polym. 183: 287–293.
66 66 Fernandes, C., Calderon V., S., Ballesteros, L.F. et al. (2018). Carbon-based sputtered coatings for enhanced chitosan-based films properties. Appl. Surf. Sci. 433: 689–695.
67 67 Serio, A., Chaves-López, C., Sacchetti, G. et al. (2018). Chitosan coating inhibits the growth of Listeria monocytogenes and extends the shelf life of vacuum-packed pork loins at 4 °C. Foods 7 (10): 1–10.
68 68 Bilbao-Sainz, C., Chiou, B.S., Punotai, K. et al. (2018). Layer-by-layer alginate and fungal chitosan based edible coatings applied to fruit bars. J. Food Sci. 83 (7): 1880–1887.
69 69 Castelo Branco Melo, N.F., de MendonçaSoares, B.L., Marques Diniz, K. et al. (2018). Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biol. Technol. 139 (January): 56–66.
70 70 Gorgieva, S. and Kokol, V. (2011). Collagen- vs. gelatine-based biomaterials