InTech.
71 71 Etxabide, A., Uranga, J., Guerrero, P., and de la Caba, K. (2017). Development of active gelatin films by means of valorisation of food processing waste: a review. Food Hydrocolloids 68: 192–198.
72 72 Bhagwat, P.K. and Dandge, P.B. (2018). Collagen and collagenolytic proteases: a review. Biocatal. Agric. Biotechnol. 15 (May): 43–55.
73 73 Da Silva, T.F. and Penna, A.L.B. (2012). Colágeno: Características químicas e propriedades funcionais. Rev. Inst. Adolfo Lutz 71 (3): 530–539.
74 74 Osawa, Y., Mizushige, T., Jinno, S. et al. (2018). Absorption and metabolism of orally administered collagen hydrolysates evaluated by the vascularly perfused rat intestine and liver in situ. Biomed Res. 39 (1): 1–11.
75 75 Correia, D.M., Padrão, J., Rodrigues, L.R. et al. (2013). Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polym. Test. 32 (5): 995–1000.
76 76 Lin, L., Regenstein, J.M., Lv, S. et al. (2017). An overview of gelatin derived from aquatic animals: properties and modification. Trends Food Sci. Technol. 68: 102–112.
77 77 Lv, L.C., Huang, Q.Y., Ding, W. et al. (2019). Fish gelatin: the novel potential applications. J. Funct. Foods 63: 1–14.
78 78 Aitboulahsen, M., Zantar, S., Laglaoui, A. et al. (2018). Gelatin-based edible coating combined with Mentha pulegium essential oil as bioactive packaging for strawberries. J. Food Qual. 2018.
79 79 dos Garcia, V.A., S., Borges, J.G., Osiro, D. et al. (2020). Orally disintegrating films based on gelatin and starch pregelatinized: new carriers of active compounds from acerola. Food Hydrocolloids 101: 1–12.
80 80 He, Q., Zhang, Y., Cai, X., and Wang, S. (2016). Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. Int. J. Biol. Macromol. 84: 153–160.
81 81 Wang, Z., Hu, S., Gao, Y. et al. (2017). Effect of collagen-lysozyme coating on fresh-salmon fillets preservation. LWT Food Sci. Technol. 75: 59–64.
82 82 Wang, Z., Hu, S., and Wang, H. (2017). Scale-up preparation and characterization of collagen/sodium alginate blend films. J. Food Qual. 2017: 1–11.
83 83 Wang, W., Liu, Y., Jia, H. et al. (2017). Effects of cellulose nanofibers filling and palmitic acid emulsions coating on the physical properties of fish gelatin films. Food Biophys. 12 (1): 23–32.
84 84 Batpho, K., Boonsupthip, W., and Rachtanapun, C. (2017). Antimicrobial activity of collagen casing impregnated with nisin against foodborne microorganisms associated with ready-to-eat sausage. Food Control 73: 1342–1352.
85 85 López-Carballo, G., Hernández-Muñoz, P., and Gavara, R. (2018). Photoactivated self-sanitizing chlorophyllin-containing coatings to prevent microbial contamination in packaged food. Coatings 8 (9): 1–14.
86 86 Amjadi, S., Emaminia, S., Nazari, M. et al. (2019). Application of reinforced ZnO nanoparticle-incorporated gelatin bionanocomposite film with chitosan nanofiber for packaging of chicken fillet and cheese as Food models. Food Bioprocess Technol. 12 (7): 1205–1219.
87 87 Bhuimbar, M.V., Bhagwat, P.K., and Dandge, P.B. (2019). Extraction and characterization of acid soluble collagen from fish waste: development of collagen-chitosan blend as food packaging film. J. Environ. Chem. Eng. 7 (2): 1–7.
88 88 Ławińska, K., Lasoń-Rydel, M., Gendaszewska, D. et al. (2019). Coating of seeds with collagen hydrolysates from leather waste. Fibres Text. East. Eur 27 (4): 59–64.
89 89 Scartazzini, L., Tosati, J.V., Cortez, D.H.C. et al. (2019). Gelatin edible coatings with mint essential oil (Mentha arvensis): film characterization and antifungal properties. J. Food Sci. Technol. 56 (9): 4045–4056.
90 90 Kouhdasht, A.M. and Nasab, M.M. (2020). Shelf-life extension of whole shrimp using an active coating containing fish skin gelatin hydrolysates produced by a natural protease. Food Sci. Nutr. 8: 214–223.
91 91 Ma, Y., Teng, A., Zhao, K. et al. (2020). A top-down approach to improve collagen film's performance: the comparisons of macro, micro and nano sized fibers. Food Chem. 309.
92 92 Moula Ali, A.M., de la Caba, K., Prodpran, T., and Benjakul, S. (2020). Quality characteristics of fried fish crackers packaged in gelatin bags: effect of squalene and storage time. Food Hydrocolloids 99.
93 93 Medic, J., Atkinson, C., and Hurburgh, C.R. (2014). Current knowledge in soybean composition. J. Am. Oil Chem. Soc. 91: 363–384.
94 94 Koshy, R.R., Mary, S.K., Thomas, S., and Pothan, L.A. (2015). Environment friendly green composites based on soy protein isolate - a review. Food Hydrocolloids 50: 174–192.
95 95 Nishinari, K., Fang, Y., Guo, S., and Phillips, G.O. (2014). Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocolloids 39: 301–318.
96 96 Abaee, A., Mohammadian, M., and Jafari, S.M. (2017). Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci. Technol. 70 (October): 69–81.
97 97 Tian, H., Guo, G., Fu, X. et al. (2018). Fabrication, properties and applications of soy-protein-based materials: a review. Int. J. Biol. Macromol. 120: 475–490.
98 98 Alipoormazandarani, N., Ghazihoseini, S., and Mohammadi, N.A. (2015). Preparation and characterization of novel bionanocomposite based on soluble soybean polysaccharide and halloysite nanoclay. Carbohydr. Polym. 134: 745–751.
99 99 Salarbashi, D., Mortazavi, S.A., Noghabi, M.S. et al. (2016). Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydr. Polym. 140: 220–227.
100 100 Akbariazam, M., Ahmadi, M., Javadian, N., and Mohammadi, N.A. (2016). Fabrication and characterization of soluble soybean polysaccharide and nanorod-rich ZnO bionanocomposite. Int. J. Biol. Macromol. 89: 369–375.
101 101 Oh, Y.A., Roh, S.H., and Min, S.C. (2016). Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids 58: 150–159.
102 102 Martelli-Tosi, M., Assis, O.B.G., Silva, N.C. et al. (2017). Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films. Carbohydr. Polym. 157: 512–520.
103 103 Salarbashi, D., Noghabi, M.S., Bazzaz, B.S.F. et al. (2017). Eco-friendly soluble soybean polysaccharide/nanoclay Na+bionanocomposite: properties and characterization. Carbohydr. Polym. 169: 524–532.
104 104 Ciannamea, E.M., Espinosa, J.P., Stefani, P.M., and Ruseckaite, R.A. (2018). Long-term stability of compression-molded soybean protein concentrate films stored under specific conditions. Food Chem. 243 (August 2017): 448–452.
105 105 Ghani, S., Barzegar, H., Noshad, M., and Hojjati, M. (2018). The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. Int. J. Biol. Macromol. 112: 197–202.
106 106 Ma, W., Rokayya, S., Xu, L. et al. (2018). Physical-chemical properties of edible film made from soybean residue and citric acid. J. Chem. 2018: 1–8.
107 107 Han, Y., Yu, M., and Wang, L. (2018). Bio-based films prepared with soybean by-products and pine (Pinus densiflora) bark extract. J. Cleaner Prod. 187: 1–8.
108 108 Zhang, L., Chen, F., Lai, S. et al. (2018). Impact of soybean protein isolate-chitosan edible coating on the softening of apricot fruit during storage. LWT 96: 604–611.
109 109 Barbut, S. and Harper, B.A. (2019). Dried Ca-alginate films: effects of glycerol, relative humidity, soy fibers, and carrageenan. LWT 103: 260–265.
110 110 González, A., Gastelú, G., Barrera, G.N. et al. (2019). Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocolloids 89: 758–764.
111 111 Merci, A., Marim, R.G., Urbano, A., and Mali, S. (2019). Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls. Food Packag. Shelf Life 20.
112 112