Gabriel Navarro Ortega

Un curso de álgebra


Скачать книгу

vacío tiene menor elemento. También es equivalente al llamado lema de Zorn, una de cuyas aplicaciones es que todo espacio vectorial tiene base. Nadie ha encontrado jamás explícitamente un buen orden en ℝ. En definitiva, todo matemático debe plantearse alguna vez si acepta el axioma de elección o no. Nuestro consejo es aceptarlo y seguir adelante).

      5. Sean A y B conjuntos. Probar que existe f : AB inyectiva si y solo si existe g : BA suprayectiva.

      (Ayuda: Aplicar el problema 1.4).

      6. Sea f : AB una aplicación. Probar:

      (i) f es inyectiva si y solo si para todo par de aplicaciones h, g : XA tales que fg = fh, entonces g = h.

      (ii) f es suprajectiva si y solo si para todo par de aplicaciones h, g : BX tales que gf = hf, entonces g = h.

      7. Sean f : AB y g : BC aplicaciones biyectivas. Probar que

      (gf)−1 = f1g1.

      (Nota: A veces este se denomina el Dressing-Undressing Principle, pues nos desvestimos en orden opuesto al que nos vestimos).

      8. Sean f : AB y g : CD aplicaciones. Se define la aplicación producto f × g : A × CB × D como (f × g)((x, y)) = (f(x), g(y)). Estudiar cuándo f × g es inyectiva o suprayectiva en función de f y de g.

      9. Para cada una de las siguientes relaciones sobre ℤ probar si son relaciones de equivalencia y en caso afirmativo, describir las clases de equivalencia.

      (i) R = {(x, y) ∈ ℤ2 | x + y < 3}.

      (ii) R = {(x, y) ∈ ℤ2 | x + y es par}.

      (iii) R = {(x, y) ∈ ℤ2 | x = y o x = −y}.

      (iv) R = {(x, y) ∈ ℤ2 | y = x + 1}.

      10. En el conjunto ℤ × ℤ×, donde ℤ× = ℤ − {0}, decimos que (a, b) y (c, d) están relacionados si ad = bc. Probar que esta relación es de equivalencia.

      (Nota: Los números racionales se definen como las clases de equivalencia de esta relación).

      11. Sea n > 0 un entero. Definimos la siguiente relación en ℤ. Decimos que a, b ∈ ℤ están relacionados si n divide a a − b. Probar que esta relación es de equivalencia y que la clase de equivalencia de a es

      a + nℤ = {a + nz | z ∈ ℤ}.

      12. Probar que las siguientes aplicaciones son biyectivas:

      (i) f : ℕ×P = {2, 4, 6, …} y g : ℕ×I = {1, 3, 5, …} dadas por f(n) = 2n y g(n) = 2n − 1. Concluir que el conjunto de números pares e impares positivos son numerables.

      (ii) Si m ∈ ℕ×, la aplicación f : ℕ× → {n ∈ ℕ× | n > m} dada por f(n) = n + m.

      (iii) f : ℕ× → ℤ dada por f(n) = n/2 si n es par, y f(n) = (1 − n)/2 si n es impar. Concluir que ℤ es numerable.

      (iv) f : ℕ× × ℕ× → ℕ× dada por f(n, m) = 2n−1(2m − 1).

      13. Si f : AB es suprayectiva y A es numerable, entonces B es finito o numerable.

      (Nota: Se pueden aplicar el problema 1.5 y el corolario 1.11. También podemos construir g : BA inyectiva utilizando el teorema del buen orden en ℕ. Como A es numerable, entonces A está bien ordenado. Si bB, sea a el menor elemento de f1({b}) y podemos definir g(b) = a).

      14. Sea A un conjunto numerable y sea B un conjunto. Probar las siguientes propiedades.

      (i) Si B es finito, entonces A − B es numerable.

      (ii) Si B es finito, entonces AB es numerable.

      (iii) Si B es numerable, entonces AB es numerable. Concluir por inducción que la unión de un número finito de conjuntos numerables es numerable.

      (iv) Si B es numerable, entonces A × B es numerable. Concluir por inducción que el producto cartesiano de un número finito de conjuntos numerables es numerable.

      (Ayuda: Para (i), utilizar el teorema 1.10. Para (ii), podemos suponer por (i) que AB = ∅. Si B tiene m elementos, sabemos por el problema 1.12 (ii) que existe f : {n ∈ ℕ× | n > m} → A biyectiva. Para (iii), por el mismo problema existen f : PA y g : IB biyectivas. Aplicar el problema 1.13. Para (iv), aplicar el problema 1.12 (iv)).

      15. Probar que ℚ es numerable, utilizando que f : ℤ × ℤ× → ℚ, definida por f(n, m) = n/m, es suprayectiva.

      16. Si An es finito o numerable para todo n ∈ ℕ×, probar que

Image

      es finito o numerable.

      (Ayuda: Por hipótesis, existe fn : ℕ×An suprayectiva. Definimos

Image

      dada por f(n, m) = fn(m). Probar que f es suprayectiva).

      17. Sea ℚ[x] el conjunto de los polinomios con coeficientes en ℚ.

      (i) Probar que ℚ[x] es numerable.

      (ii) Un número complejo α es algebraico sobre ℚ si existe un polinomio 0 ≠ f con coeficientes en ℚ, tal que f(α) = 0. Utilizando que todo polinomio f de grado n tiene (como mucho) n ráıces complejas, probar que el conjunto de los números algebraicos es numerable.

      (Ayuda: Para (i), agrupar los polinomios según grado y aplicar los problemas 1.16 y 1.14 (iv). Para (ii), volver a aplicar el problema 1.16).

      18. Comprobar el siguiente argumento de D. Keyt para probar que ℝ no es numerable. Definimos una aplicación inyectiva f : P (ℕ) → [0, 1/9] de la manera siguiente. Si S ⊆ ℕ, entonces f(S) es el número real 0.a0a1a2 … an, donde an = 0 si nS, y an = 1 si nS. Por ejemplo, f(∅) = 0, f(N) = 0.11111 … = 1/9, f({0, 1, 3, 5}) = 0.110101, etc.

      Utilizando los teoremas