Группа авторов

Handbook of Biomass Valorization for Industrial Applications


Скачать книгу

(Pt–Re/C) have been employed for the transformation of glycerol into hydrogen or synthesis gas. It was observed that a Pt–Re/C catalyst with an atomic ratio Pt/Re =1 showed high catalytic activity, selectivity to syngas, and long-term stability [45]. The carbon was used as support owing to its long-term hydrothermal stability [44].

      The pyrolysis of glycerol with the support of carbonaceous catalyst is an important method for the formation of syngas with a higher H2/CO ratio. Other methods used for the formation of synthesis gas include dry and steam reforming of glycerol. Fernandez et al. [46] have compared the above three methods (steam reforming, dry reforming, and pyrolysis) for the synthesis of syngas using commercially available activated carbon as a catalyst. Carbon-base catalyst was favorable for generating syngas with H2/CO ratio not far from 1, reduce the CO2 fraction in the gaseous product. The reforming of glycerol uses CO2 (dry reforming) or H2O (steam reforming) as an oxidizing agent which encourages the higher conversion of glycerol as compared to pyrolysis. The dry reforming generates the lowest amount of hydrogen and syngas, and the highest amounts gas fraction, whereas the reverse occurs in the steam reforming process. They have also compared the microwave-assisted process with the conventional heating process. The microwave-assisted method promotes more conversion of glycerol as compared to the conventional method [46].

       4.4.2.4 Oxidation of Glycerol

      The heterogeneous catalytic oxidation process can be used for the oxidation of a unique structure of glycerol using low-cost oxidizing agents such as oxygen, air, and H2O2 instead of environmentally harmful oxidants, e.g., K2Cr2O7, HNO3, H2CrO4, etc. The synthesis of a highly selective catalyst is the main challenge in this oxidation reaction. This catalyst must be selective towards either the oxidation of the primary alcohol group, to produce glyceric acid, or the oxidation of the secondary alcohol group, to synthesized hydroxypyruvic acid and dihydroxyacetone. Several studies have been reported for chemoselective glycerol oxidation over supported noble metal nanoparticles such as Pt, Pd, and Au. In general, the selective oxidation of glycerol takes place in the aqueous medium. Table 4.3 summarizes the performance of different catalysts.

      The Au particles supported on multiwalled carbon nanotubes enhance the chemoselectivity for glycerol oxidation towards the formation of dihydroxyacetone. The catalyst shows 60% selectivity along with the high activity. The results were compared by using activated carbon under similar metal loading and particle size. The activated carbon encourages the synthesis of glyceric acid. The study suggests that the type of supports play significant role in chemoselectivity [47]. Selective oxidation of crude glycerol into lactic acid and glyceric acid has been carried by different groups using carbon as a support for Pt, Pd, Cu–Pt and Au–Pd etc. [48–50].

Schematic illustration of plausible reaction plan for the production of oxygenated derivatives from glycerol.

       4.4.2.5 Etherification

      Devi and coworkers have prepared a novel carbon-based catalyst by partial carbonization and sulfonation of glycerol pitch using concentrated H2SO4. The resulted catalyst is loaded with –OH, –SO3H, and –COOH functionalities. This carbon-based catalyst has shown tremendous potential for the conversion of glycerol to tetrahydropyranyl (THP) ethers and tetrahydropyranyl protection/deprotection of phenols and alcohols at ambient temperature. The catalyst is advantageous due to its easy synthesis, high yields, reusability, and operational simplicity [52].

Schematic illustration of glycerol etherification in the presence of isobutylene.

      Carvalho and coworkers have utilized sulfonated carbon-based catalysts for glycerol etherification. The catalyst was synthesized by controlled pyrolysis of agroindustrial wastes such as sugar cane bagasse, coconut husk, and coffee grounds at 673 K under N2 flow. The pyrolyzed samples were functionalized with sulfuric acid. The catalysts were investigated for glycerol etherification with TBA in the liquid phase under the batch reactor. The glycerol conversion of about 80% with a selectivity of 21.3% was observed for the formation of DTBG and TTBG in a short reaction time of 4 h which was equivalent to commercially available resin and various catalysts reported in the literature [54].

       4.4.2.6 Dehydration of Glycerol