Группа авторов

Functional Foods


Скачать книгу

Cereal Sci., 44, 236–251, 2006.

      233. Bralley, E., Greenspan, P., Hargrove, J. L. & Hartle, D. K., Inhibition of hyaluronidase activity by select sorghum brans. J. Med. Food, 11, 307–312, 2008.

      234. Dykes, L., Seitz, L. M., Rooney, W. L. & Rooney, L. W., Flavonoid composition of red sorghum genotypes. Food Chem., 116, 313–317, 2009.

      235. Tenaillon, M. I. & Charcosset, A. A., European perspective on maize history. C. R. Biol., 334, 221–228, 2011.

      236. Yang, G., Wang, Q., Liu, C., Wang, X., Fan, S. & Huang, W., Rapid and visual detection of the main chemical compositions in maize seeds based on Raman hyperspectral imaging. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 200, 186–194, 2018.

      237. Zaidi, P. H. & Singh, N. N., Stresses on maize in tropics, p. 500, Director of Maize reserch, New Delhi, 2005.

      238. Abbassian, A., Maize: International market profile, p. 37, Food and Agriculture Organization of the United Nations, 2006.

      239. Mina, U., Kumar, R., Gogoi, R., Bhatia, A., Harit, R. C., Singh, D., Kumar, A. & Kumar, A., Effect of elevated temperature and carbon dioxide on maize genotypes health index. Ecol. Indic., 105, 292–302, 2019.

      240. Abbasi, A. & Niakousari, M., Kinetics of ascorbic acid degradation in un-pasteurized Iranian lemon juice during regular storage conditions. Pakistan J. Biol. Sci., 11, 1365–1369, 2008.

      241. Haq, I. -U.-, Khan, A. A., Khan, I. A. & Azmat, M. A., Comprehensive screening and selection of okra (Abelmoschus esculentus) germplasm for salinity tolerance at the seedling stage and during plant ontogeny. J. Zhejiang Univ. Sci. B, 13, 533–544, 2012.

      242. Qamar, S., Aslam, M. & Javed, M. A., Determination of proximate chemical composition and detection of inorganic nutrients in maize (Zea mays L.). Mater. Today Proc., 3, 715–718, 2016.

      244. Smith, C. W., Betrán, J. & Runge, E. C. A., Corn: Origin, history, technology, and production, Vol. 4, p. 976, John Wiley & Sons, 2004.

      245. Rooney, L. W. & Serna-Saldivar, S. O., Tortillas: Wheat flour and corn products, p. 288, AACC International, St. Paul, MN, USA, 2015.

      246. Montero-Vargas, J. M., Ortíz-Islas, S., Ramírez-Sánchez, O., García-Lara, S. & Winkler, R., Prediction of the antioxidant capacity of maize (Zea mays) hybrids using mass fingerprinting and data mining. Food Biosci., 37, 100647, 2020.

      247. Siyuan, S., Tong, L. & Liu, R. H., Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness, 7, 185–195, 2018.

      248. Frank, J., Sundberg, B., Kamal-Eldin, A., Vessby, B. & Åman, P., Yeast-leavened oat breads with high or low molecular weight β-glucan do not differ in their effects on blood concentrations of lipids, insulin, or glucose in humans. J. Nutr., 134, 1384–1388, 2004.

      250. Michalska, A., Ceglinska, A., Amarowicz, R., Piskula, M. K., Szawara-Nowak, D. & Zielinski, H., Antioxidant contents and antioxidative properties of traditional rye breads. J. Agric. Food Chem., 55, 734–740, 2007.

      251. Ishida, Y., Hiei, Y. & Komari, T., High-efficiency transformation techniques, in: Applications of Genetic and Genomic Research in Cereals, T. Miedaner & V. Korzun (Eds.), pp. 97–120, Woodhead Publishing, 2019.

      252. Price, R. K. & Welch, R. W., Cereal grains, in: Reference Module in Biomedical Sciences Encyclopedia of Human Nutrition, B. Caballero (ed.), pp. 307–316, Academic Press, Oxford, 2003.

      253. Poutanen, K., Rye and rye bread-An important part of the North European bread basket, in: Rye and Health, K. Poutanen & P. Åman (eds.), pp. 1–6, American Association of Cereal Chemists International, 2014.

      254. Salovaara, H. & Autio, K., Rye and triticale, in: Cereals and Cereal Products, D. A. V. Dendy & B. J. Dobraszczyk (eds.), pp. 391–410, Aspen Publishers, 2001.

      255. Martinez-Villaluenga, C., Michalska, A., Frias, J., Piskula, M. K., Vidal-Valverde, C. & Zieliński, H., Effect of flour extraction rate and baking on thiamine and riboflavin content and antioxidant capacity of traditional rye bread. J. Food Sci., 74, C49–C55, 2009.

      256. Bondia-Pons, I., Aura, A. M., Vuorela, S., Kolehmainen, M., Mykkänen, H. & Poutanen, K., Rye phenolics in nutrition and health. J. Cereal Sci., 49, 323–336, 2009.

      257. Amarowicz, R. & Weidner, S., Content of phenolic acids in rye caryopses determined using DAD-HPLC method. Czech J. Food Sci., 19, 201–206, 2001.

      258. Kulichová, K., Sokol, J., Nemeček, P., Maliarová, M., Maliar, T., Havrlentová, M. & Kraic, J., Phenolic compounds and biological activities of rye (Secale cereale L.) grains. Open Chem., 17, 988–999, 2019.

      259. Bushuk, W., Rye: Production, Chemistry, and Technology, American Association of Cereal Chemists, 2001.

      260. Hansen, H. B., Møller, B., Andersen, S. B., Jørgensen, J. R. & Ase, H., Grain characteristics, chemical composition, and functional properties of rye (Secale cereale L.) as influenced by genotype and harvest year. J. Agric. Food Chem., 52, 2282–2291, 2004.

      261. Henry, R. J. & Saini, H., Characterization of cereal sugars and oligosaccharides. Cereal Chem., 66, 362–365, 1989.

      262. Hackl, W., Pieper, B., Pieper, R., Korn, U. & Zeyner, A., Effects of ensiling cereal grains (barley, wheat, triticale and rye) on total and pre-caecal digestibility of proximate nutrients and amino acids in pigs. J. Anim. Physiol. Anim. Nutr. (Berl)., 94, 729–735, 2010.

      263. Hoseney, R. C., Minor constituents of cereals, in: Principles of Cereal Science and Technology, J. A. Delcour & R. C. Hoseney (Eds..), p. 327, American Association of Cereal Chemists, 1986.

      264. Bengtsson, S. & Åman, P., Isolation and chemical characterization of water-soluble arabinoxylans in rye grain. Carbohydr. Polym., 12, 267–277, 1990.

      265. Bedford, M. R., Classen, H. L. & Campbell, G. L., The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult. Sci., 70, 1571–1577, 1991.

      266. Boros, D., Marquardt, R. R., Slominski, B. A. & Guenter, W., Extract viscosity as an indirect assay for water-soluble pentosan content in rye. Cereal Chem., 70, 575–580, 1993.

      267. Wang, S., Thomas, K. C., Ingledew, W. M., Sosulski, K. & Sosulski, F. W., Rye and triticale as feedstock for fuel ethanol production. Cereal Chem. J., 74, 621–625, 1997.

      268. Kritchevsky, D., Dietary fibre in health and disease., in: Advanced Dietary Fibre Technology, B. McCleary & L. Prosky (Eds.), pp. 147–161, Blackwell Science, 2008.

      269. Adlercreutz, H., Western diet and Western diseases: Some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Invest. Suppl., 201, 3–23, 1990.

      270. Zhang, J. X., Lundin, E., Reuterving, C. O., Hallmans, G., Stenling, R., Westerlund, E. & Aman, P., Effect of rye bran, oat bran and soy bean fibre on lipid and bile metabolisms, and gallbladder morphology in male syrian hamsters, in Dietary Fibre: Chemical and Biological Aspects, D. A. T. Southgate, K. W. Waldron, I. T. Johnson & G. R. Fenwick (Eds.), pp. 313–317, The Royal Society of Chemistry, 1990.

      271. Davies, M. J., Bowey, E. A., Adlercreutz, H., Rowland, I. R. & Rumsby, P. C., Effects of soy or rye supplementation of high-fat diets on colon tumour development in azoxymethane-treated rats. Carcinogenesis, 20, 927–931, 1999.

      272.