Группа авторов

Polar Organometallic Reagents


Скачать книгу

metal organometallics used in synthesis, several different flavours of reagents have evolved to suit various applications. These include heteroleptic cuprates, which normally combine organyl and heteroatom‐based ligands as a means of increasing organyl transfer efficiency; organoamidocuprates are one such well‐studied member of the heterocuprate family. They have become known by virtue of their unique features and reactivities. They have many potential applications in organic transformations, especially in stereoselective synthesis because the amido ligand can act not only as a dummy (nontransferable) group but also as a chiral auxiliary [211]. The non‐transferability of amido (heteroatom) ligands on cuprates in carbon–carbon bond forming reactions has also been theoretically clarified by DFT calculations [212]. A new use for amidocuprates was investigated, wherein the amido ligand transfers (reacts) first as a base for chemoselective directed ortho‐cupration and then as a switch in successive C–C, C–O, and C–N bond formation processes [213, 214]. To develop new applications of amidocuprates, the deprotonative metalation of functionalized benzenes was investigated [215]. Initial studies used benzonitrile as a model aromatic compound with an electron‐withdrawing group to identify favourable reaction conditions. These indicated that a TMP group as the amido moiety and THF as solvent were suitable starting points for the optimization of directed metalation reaction conditions (Figure 1.21). Attempts to use the Gilman amidocuprate (TMP)2CuLi 156 prepared from CuI proved unsuccessful in terms of reactivity and directed metalation selectivity. On the other hand, the use of CuCN was presumed to result in the incorporation of cyanide and the formation of so‐called Lipshutz amidocuprates. Two examples, putatively (TMP)2Cu(CN)Li2157 and MeCu(TMP)(CN)Li2158, have been proposed to exemplify this, with reaction mixtures incorporating the appropriate amounts of the necessary components (CuCN, LTMP and, for 158, MeLi) enabling metalation without any catalyst, in good yields at 0 °C (summarized in Scheme 1.34 and explored in depth in Chapter 8). It was found that although the latter case employed a CuMe‐containing reagent, at least one TMP ligand, one of the bulkiest available amido ligands, was crucial for good yield and chemoselectivity.

Schematic illustration of a generalized view of directed ortho-cupration. Schematic illustration of molecular structure of Lipshutz cuprate dimer2 1592.

      Source: Adapted from Usui et al. [213].

Schematic illustration of molecular structures of organoamidocuprates (a)2 1602, (b) MeCu(TMP)Li(TMEDA) 161 and (c) PhCu(TMP)Li(THF)3 162.

      Sources: Adapted from Davies et al. [219]; Haywood et al. [220].