данных каталога Hipparcos.
§165. Анри Луи Ле Шателье (1884) сформулировал термодинамический принцип подвижного равновесия для химических реакций: «Если вы применяете принуждение к химической системе в равновесии, она реагирует так, что эффект принуждения становится минимальным». [326] Позже Карл Фердинанд Браун (1887) независимо обобщил данный принцип: «Если вы применяете принуждение к системе, находящейся в равновесии, изменяя внешние условия, то в результате этого нарушения равновесия устанавливается новое равновесие, уклоняющееся от принуждения». [327] Впоследствии принцип Ле Шателье – Брауна был распространен на другие процессы восстановления равновесия любой природы (механическое, тепловое, химическое, электрическое): если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле107), то в системе усиливаются процессы, направленные в сторону противодействия изменениям. [328] В самом упрощенном виде данный принцип подразумевает, что любое изменение равновесия вызывает противоположную реакцию в реагирующей системе. Строгий (не формульный) вывод сокращённого принципа Ле Шателье – Брауна дан словесно Джозайя Уиллардом Гиббсом (1875) в работе «О равновесии гетерогенных веществ», преобразуя в описательный эквивалент. [329]
§166. Гиббс (1884) ввел понятие «ансамбля», подразумевающее совокупность большого числа неразличимых реплик рассматриваемой системы, взаимодействующих друг с другом, но которые изолированы от остальной Вселенной. Реплики могут находиться в различных микроскопических состояниях, определяемых, например, положением и импульсами составляющих молекул, но макроскопическое состояние, определяемое давлением, температурой и/или другими термодинамическими переменными, идентично. [330] Гиббс утверждал, что свойства системы, усредненные во времени, идентичны среднему значению по всем членам ансамбля, если «эргодическая гипотеза108» верна. Гиббс также использовал этот инструмент, чтобы получить отношения между системами, ограниченными различными способами, например, чтобы связать свойства системы при постоянном объеме и энергии с теми, при постоянной температуре и давлении. [331] Он считал, что доказательство зависит от двух положений: 1) конечная верхняя граница может быть установлена на общий потенциально доступный объем фазового пространства109; 2) сохраняется фазовой объем конечного элемента при динамике, к примеру, для механической системы это обеспечивается теоремой110 Жозефа Лиувилля (1838), по которой функция распределения гамильтоновой системы постоянна вдоль любой траектории в фазовом пространстве. [332]
§167. Шведский математик и физик Иоганн Якоб Бальмер (1885) математически описал длины волн красной, зелёной, синей и фиолетовой линий водородного спектра, и предсказал существование пятой линии с длиной волны в ближней ультрафиолетовой области,