Группа авторов

Drug Transporters


Скачать книгу

H, You G. An essential role of Nedd4‐2 in the ubiquitination, expression, and function of organic anion transporter‐3. Mol Pharm 2016; 13 (2):621–630.

      83 [83] Duan G, Walther D. The roles of post‐translational modifications in the context of protein interaction networks. PLoS Comput Biol 2015; 11 (2):e1004049.

      84 [84] Spoel SH. Orchestrating the proteome with post‐translational modifications. J Exp Bot 2018; 69 (19):4499–4503.

      85 [85] Xu D, Wang H, You G. Posttranslational regulation of organic anion transporters by ubiquitination: known and novel. Med Res Rev 2016; 36 (5):964–979.

      86 [86] Duan P, You G. Short‐term regulation of organic anion transporters. Pharmacol Ther 2010; 125 (1):55–61.

      87 [87] Xu D, You G. Loops and layers of post‐translational modifications of drug transporters. Adv Drug Deliv Rev 2017; 116:37–44.

      88 [88] Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695 (1–3):55–72.

      89 [89] Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012; 81:203–229.

      90 [90] Zhang Q, Hong M, Duan P, Pan Z, Ma J, You G. Organic anion transporter OAT1 undergoes constitutive and protein kinase C‐regulated trafficking through a dynamin‐ and clathrin‐dependent pathway. J Biol Chem 2008; 283 (47):32570–32579.

      91 [91] Xu D, Wang H, Zhang Q, You G. Nedd4‐2 but not Nedd4‐1 is critical for protein kinase C‐regulated ubiquitination, expression, and transport activity of human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 310 (9):F821–F831.

      92 [92] Xu D, Wang H, Gardner C, Pan Z, Zhang PL, Zhang J, You G. The role of Nedd4‐1 WW domains in binding and regulating human organic anion transporter 1. Am J Physiol Renal Physiol 2016; 311 (2):F320–F329.

      93 [93] Xu D, Zhang J, Zhang Q, Fan Y, Liu C, You G. PKC/Nedd4‐2 signaling pathway regulates the cell surface expression of drug transporter hOAT1. Drug Metab Dispos 2017; 45 (8):887–895.

      94 [94] Wang H, You G. SGK1/Nedd4‐2 signaling pathway regulates the activity of human organic anion transporters 3. Biopharm Drug Dispos 2017; 38 (8):449–457.

      95 [95] Wang H, Xu D, Toh MF, Pao AC, You G. Serum‐ and glucocorticoid‐inducible kinase SGK2 regulates human organic anion transporters 4 via ubiquitin ligase Nedd4‐2. Biochem Pharmacol 2016; 102:120–129.

      96 [96] Xu D, Huang H, Toh MF, You G. Serum‐ and glucocorticoid‐inducible kinase sgk2 stimulates the transport activity of human organic anion transporters 1 by enhancing the stability of the transporter. Int J Biochem Mol Biol 2016; 7 (1):19–26.

      97 [97] Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta 2004; 1695 (1–3):189–207.

      98 [98] Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10 (8):550–563.

      99 [99] Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X. Dysregulation of ubiquitin‐proteasome system in neurodegenerative diseases. Front Aging Neurosci 2016; 8:303.

      100 [100] Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2018; 9 (9):754–769.

      101 [101] Wu Y, Kang J, Zhang L, Liang Z, Tang X, Yan Y, Qian H, Zhang X, Xu W, Mao F. Ubiquitination regulation of inflammatory responses through NF‐kappaB pathway. Am J Transl Res 2018; 10 (3):881–891.

      102 [102] Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM, Baek KH. The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns (GEP) 2006; 6 (3):277–284.

      103 [103] Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y. MINDY‐1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell 2016; 63 (1):146–155.

      104 [104] Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbe S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93 (3):1289–1315.

      105 [105] Coyne ES, Wing SS. The business of deubiquitination ‐ location, location, location. F1000Res 2016; 5:163.

      106 [106] Zhang J, Liu C, You G. Ubiquitin‐specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1. Biochim Biophys Acta Gen Subj 2020;1864 (12):129701.

      107 [107] Hunter T, Sun H. Crosstalk Between the SUMO and Ubiquitin Pathways. In: Jentsch S, Haendler B, editors. The Ubiquitin System in Health and Disease. Ernst Schering Foundation Symposium Proceedings. Volume 2008/1, Berlin, Heidelberg: Springer; 2008. doi: https://doi.org/10.1007/2789_2008_098.

      108 [108] Wang H, Zhang J, You G. Activation of protein kinase A stimulates SUMOylation, expression, and transport activity of organic anion transporter 3. AAPS J 2019; 21 (2):30.

      109 [109] Duan P, Li S, You G. Angiotensin II inhibits activity of human organic anion transporter 3 through activation of protein kinase Calpha: accelerating endocytosis of the transporter. Eur J Pharmacol 2010; 627 (1–3):49–55.

      110 [110] Li S, Duan P, You G. Regulation of human organic anion transporter 1 by ANG II: involvement of protein kinase Calpha. Am J Physiol Endocrinol Metab 2009; 296 (2):E378–E383.

      111 [111] Zhang J, Liu C, You G, AG490, a JAK2‐specific inhibitor, downregulates the expression and activity of organic anion transporter‐3. J Pharmacol Sci 2018; 136 (3):142–148.

      112 [112] Wang H, Liu C, You G. The activity of organic anion transporter‐3: role of dexamethasone. J Pharmacol Sci 2018; 136 (2):79–85.

      113 [113] Wang H, Zhang J, You G. The mechanistic links between insulin and human organic anion transporter 4. Int J Pharm 2019; 555:165–174.

      114 [114] Emami Riedmaier A, Nies AT, Schaeffeler E, Schwab M. Organic anion transporters and their implications in pharmacotherapy. Pharmacol Rev 2012; 64 (3):421–449.

      115 [115] Nagle MA, Truong DM, Dnyanmote AV, Ahn SY, Eraly SA, Wu W, Nigam SK. Analysis of three‐dimensional systems for developing and mature kidneys clarifies the role of OAT1 and OAT3 in antiviral handling. J Biol Chem 2011; 286 (1):243–251.

      116 [116] Vanwert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol 2007; 293 (4):F1332–F1341.

      117 [117] Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol 2008; 294 (4):F867–F873.

      118 [118] Vanwert AL, Srimaroeng C, Sweet DH. Organic anion transporter 3 (oat3/slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol Pharmacol 2008; 74 (1):122–131.

      119 [119] Torres AM, Dnyanmote AV, Bush KT, Wu W, Nigam SK. Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury‐induced kidney injury. J Biol Chem 2011; 286 (30):26391–26395.

      120 [120] Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res 2011; 10 (6):2842–2851.

      121 [121] Wu W, Bush KT, Nigam SK. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci Rep 2017; 7 (1):1–9.

      122 [122] Eraly SA, Vallon V, Rieg T, Gangoiti JA, Wikoff WR, Siuzdak G, Barshop BA, Nigam SK. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics 2008; 33 (2):180–192.

      123 [123] Granados JC, Richelle A, Gutierrez JM, Zhang P, Zhang X, Bhatnagar V, Lewis NE, Nigam SK. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. J Biol Chem 2021; 296:100575.

      124 [124]