Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock‐out mice. J Biol Chem 2006; 281 (8):5072–5083.
125 [125] Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, Ahn SY, Mahapatra NR, Mahata SK, Gangoiti JA, Wu W, Barshop BA, Siuzdak G, Nigam SK. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol (2008); 19 (9):1732–1740.
126 [126] Nagle MA, Wu W, Eraly SA, Nigam SK. Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci Lett 2013; 534:133–138.
127 [127] Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. Multi‐level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J Biol Chem 2008; 283 (13):8654–8663.
128 [128] VanWert AL, Sweet DH. Impaired clearance of methotrexate in organic anion transporter 3 (Slc22a8) knockout mice: a gender specific impact of reduced folates. Pharm Res 2008; 25 (2):453–462.
129 [129] Granados JC, Nigam AK, Bush KT, Jamshidi N, Nigam SK. A key role for the transporter OAT1 in systemic lipid metabolism. J Biol Chem 2021; 296:100603.
130 [130] Duan P, Li S, Ai N, Hu L, Welsh WJ, You G. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization. Mol Pharm 2012; 9 (11):3340–3346.
131 [131] Kaler G, Truong DM, Khandelwal A, Nagle M, Eraly SA, Swaan PW, Nigam SK. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J Biol Chem 2007; 282 (33):23841–23853.
132 [132] Kouznetsova VL, Tsigelny IF, Nagle MA, Nigam SK. Elucidation of common pharmacophores from analysis of targeted metabolites transported by the multispecific drug transporter‐organic anion transporter1 (Oat1). Bioorg Med Chem 2011; 19 (11):3320–3340.
133 [133] Liu HC, Goldenberg A, Chen Y, Lun C, Wu W, Bush KT, Balac N, Rodriguez P, Abagyan R, Nigam SK. Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: a machine‐learning approach. J Pharmacol Exp Ther 2016; 359 (1):215–229.
134 [134] Lai RE, Jay CE, Sweet DH. Organic solute carrier 22 (SLC22) family: potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal 2018; 26 (2):S45–S60.
135 [135] An G, Wang X, Morris ME. Flavonoids are inhibitors of human organic anion transporter 1 (oat1)–mediated transport. Drug Metab Dispos 2014; 42 (9):1357–1366.
136 [136] Wang X, Morris ME. Diet/nutrient interactions with drug transporters. In: You G, Morris ME, editors. Drug Transporters: Molecular Characterization and Role in Drug Disposition. Wiley; 2014. p 409–432.
137 [137] Wang L, Sweet DH. Interaction of natural dietary and herbal anionic compounds and flavonoids with human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Evid Based Complement Alternat Med 2013; 2013:612527. doi: https://doi.org/10.1155/2013/612527.
138 [138] Huo X, Meng Q, Wang C, Wu J, Zhu Y, Sun P, Ma X, Sun H, Liu K. Targeting renal OATs to develop renal protective agent from traditional Chinese medicines: protective effect of Apigenin against imipenem‐induced nephrotoxicity. Phytother Res 2020; 34 (11):2998–3010.
139 [139] Kang YJ, Lee CH, Park S‐J, Lee HS, Choi M‐K, Song I‐S. Involvement of organic anion transporters in the pharmacokinetics and drug interaction of rosmarinic acid. Pharmaceutics 2021; 13 (1):83.
140 [140] Kawasaki T, Kondo M, Hiramatsu R, Nabekura T. (−)‐Epigallocatechin‐3‐gallate inhibits human and rat renal organic anion transporters. ACS Omega 2021; 6 (6):4347–4354.
141 [141] Li C, Wang X, Bi Y, Yu H, Wei J, Zhang Y, Han L, Zhang Y. Potent inhibitors of organic anion transporters 1 and 3 from natural compounds and their protective effect on aristolochic acid nephropathy. Toxicol Sci 2020; 175 (2):279–291.
142 [142] Wu W, Jamshidi N, Eraly SA, Liu HC, Bush KT, Palsson BO, Nigam SK. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab Dispos 2013; 41 (10):1825–1834.
143 [143] McAdams‐DeMarco MA, Maynard JW, Baer AN, Kao LW, Kottgen A, Coresh J. A urate gene‐by‐diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann Rheum Dis 2013; 72 (5):701–706.
144 [144] Jansen J, Jansen K, Neven E, Poesen R, Othman A, van Mil A, Sluijter J, Torano JS, Zaal EA, Berkers CR. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome‐derived organic anion secretion. Proc Natl Acad Sci 2019; 116 (32):16105–16110.
145 [145] Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos 2015; 43 (10):1522–1535.
146 [146] Fan Y, Liang Z, Zhang J, You G. Oral proteasomal inhibitors ixazomib, oprozomib, and delanzomib upregulate the function of organic anion transporter 3 (OAT3): implications in OAT3‐mediated drug‐drug interactions. Pharmaceutics 2021; 13 (3):314.
147 [147] Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 2007; 104 (6):1777–1782.
148 [148] Liu HC, Jamshidi N, Chen Y, Eraly SA, Cho SY, Bhatnagar V, Wu W, Bush KT, Abagyan R, Palsson BO. An organic anion transporter 1 (OAT1)‐centered metabolic network. J Biol Chem 2016; 291 (37):19474–19486.
149 [149] Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, Gatto F, Nilsson A, Gonzalez GAP, Aurich MK. Recon3D enables a three‐dimensional view of gene variation in human metabolism. Nat Biotechnol 2018; 36 (3):272.
150 [150] Yee SW, Giacomini MM, Hsueh CH, Weitz D, Liang X, Goswami S, Kinchen JM, Coelho A, Zur AA, Mertsch K. Metabolomic and genome‐wide association studies reveal potential endogenous biomarkers for OATP1B1. Clin Pharmacol Ther 2016; 100 (5):524–536.
151 [151] Bush KT, Wu W, Lun C, Nigam SK. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut–liver–kidney axis. J Biol Chem 2017; 292 (38):15789–15803.
152 [152] Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol 2019; 15 (5):301–316.
153 [153] Bush KT, Singh P, Nigam SK. Gut‐derived uremic toxin handling in vivo requires OAT‐mediated tubular secretion in chronic kidney disease. JCI Insight 2020; 5 (7):e133817.
154 [154] Lowenstein J, Nigam SK. Uremic toxins in organ crosstalk. Front Med 2021; 8:457.
155 [155] Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol 2012; 7:99–122.
156 [156] Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc 2017; 6 (2):e005022.
157 [157] Naud J, Nolin TD, Leblond FA, Pichette V. Current understanding of drug disposition in kidney disease. J Clin Pharmacol 2012; 52 (1 Suppl):10S–22S.
158 [158] Brandoni A, Hazelhoff MH, Bulacio RP, Torres AM. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis. World J Gastroenterol 2012; 18 (44):6387–6397.
159 [159] Nigam SK, Bhatnagar V. The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr Opin Nephrol Hypertens 2018; 27 (4):305.
160 [160] Bobulescu IA, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis 2012; 19 (6):358–371.
161 [161] Mount DB. The kidney in hyperuricemia and gout. Curr Opin Nephrol Hypertens (2013); 22 (2):216–223.
162 [162] Anzai N, Jutabha P, Amonpatumrat‐Takahashi S, Sakurai H. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome‐wide association studies. Clin Exp Nephrol 2012; 16