Abdullah Eroglu

RF/Microwave Engineering and Applications in Energy Systems


Скачать книгу

around a reference point. The curl of a vector is expressed as

      (1.62)nabla x upper T overbar equals Start 3 By 3 Determinant 1st Row 1st Column ModifyingAbove x With ampersand c period circ semicolon 2nd Column ModifyingAbove y With ampersand c period circ semicolon 3rd Column ModifyingAbove z With ampersand c period circ semicolon 2nd Row 1st Column StartFraction partial-differential Over partial-differential x EndFraction 2nd Column StartFraction partial-differential Over partial-differential y EndFraction 3rd Column StartFraction partial-differential Over partial-differential z EndFraction 3rd Row 1st Column upper T Subscript x Baseline 2nd Column upper T Subscript y Baseline 3rd Column upper T Subscript z Baseline EndDeterminant equals ModifyingAbove x With ampersand c period circ semicolon left-parenthesis StartFraction partial-differential upper T Subscript z Baseline Over partial-differential y EndFraction minus StartFraction partial-differential upper T Subscript y Baseline Over partial-differential z EndFraction right-parenthesis plus ModifyingAbove y With ampersand c period circ semicolon left-parenthesis StartFraction partial-differential upper T Subscript x Baseline Over partial-differential z EndFraction minus StartFraction partial-differential upper T Subscript z Baseline Over partial-differential x EndFraction right-parenthesis plus ModifyingAbove z With ampersand c period circ semicolon left-parenthesis StartFraction partial-differential upper T Subscript y Baseline Over partial-differential x EndFraction minus StartFraction partial-differential upper T Subscript x Baseline Over partial-differential y EndFraction right-parenthesis

      Curl can be given in a cylindrical or spherical coordinate system as

      (1.63)nabla x upper T overbar equals StartFraction 1 Over r EndFraction Start 3 By 3 Determinant 1st Row 1st Column ModifyingAbove r With ampersand c period circ semicolon 2nd Column r ModifyingAbove phi With ampersand c period circ semicolon 3rd Column ModifyingAbove z With ampersand c period circ semicolon 2nd Row 1st Column StartFraction partial-differential Over partial-differential r EndFraction 2nd Column StartFraction partial-differential Over partial-differential phi EndFraction 3rd Column StartFraction partial-differential Over partial-differential z EndFraction 3rd Row 1st Column upper T Subscript r Baseline 2nd Column italic r upper T Subscript phi Baseline 3rd Column upper T Subscript z Baseline EndDeterminant equals ModifyingAbove r With ampersand c period circ semicolon left-parenthesis StartFraction 1 Over r EndFraction StartFraction partial-differential upper T Subscript z Baseline Over partial-differential phi EndFraction minus StartFraction partial-differential upper T Subscript phi Baseline Over partial-differential z EndFraction right-parenthesis plus ModifyingAbove phi With ampersand c period circ semicolon left-parenthesis StartFraction partial-differential upper T Subscript r Baseline Over partial-differential z EndFraction minus StartFraction partial-differential upper T Subscript z Baseline Over partial-differential r EndFraction right-parenthesis plus ModifyingAbove z With ampersand c period circ semicolon StartFraction 1 Over r EndFraction left-parenthesis StartFraction partial-differential Over partial-differential r EndFraction left-parenthesis italic r upper T Subscript phi Baseline right-parenthesis minus StartFraction partial-differential upper T Subscript r Baseline Over partial-differential phi EndFraction right-parenthesis

      and

      (1.64)StartLayout 1st Row nabla x upper T overbar equals StartFraction 1 Over r squared sine theta EndFraction Start 3 By 3 Determinant 1st Row 1st Column ModifyingAbove upper R With ampersand c period circ semicolon 2nd Column upper R ModifyingAbove theta With ampersand c period circ semicolon 3rd Column upper R sine theta ModifyingAbove phi With ampersand c period circ semicolon 2nd Row 1st Column StartFraction partial-differential Over partial-differential upper R EndFraction 2nd Column StartFraction partial-differential Over partial-differential theta EndFraction 3rd Column StartFraction partial-differential Over partial-differential phi EndFraction 3rd Row 1st Column upper T Subscript r Baseline 2nd Column italic upper R upper T Subscript theta Baseline 3rd Column upper R sine theta upper T Subscript phi Baseline EndDeterminant equals ModifyingAbove upper R With ampersand c period circ semicolon StartFraction 1 Over upper R sine theta EndFraction left-parenthesis StartFraction partial-differential Over partial-differential theta EndFraction left-parenthesis upper T Subscript phi Baseline sine theta right-parenthesis minus StartFraction partial-differential upper T Subscript theta Baseline Over partial-differential phi EndFraction right-parenthesis plus ModifyingAbove theta With ampersand c period circ semicolon StartFraction 1 Over upper R EndFraction left-parenthesis StartFraction 1 Over sine theta EndFraction StartFraction partial-differential upper T Subscript upper R Baseline Over partial-differential phi EndFraction minus StartFraction partial-differential Over partial-differential upper R EndFraction left-parenthesis italic upper R upper T Subscript phi Baseline right-parenthesis right-parenthesis 2nd Row plus ModifyingAbove phi With ampersand c period circ semicolon StartFraction 1 Over upper R EndFraction left-parenthesis StartFraction partial-differential Over partial-differential upper R EndFraction left-parenthesis italic upper R upper T Subscript theta Baseline right-parenthesis minus StartFraction partial-differential upper T Subscript upper R Baseline Over partial-differential theta EndFraction right-parenthesis EndLayout

      It is important to note that curl operation on any vector results in another vector. Curl cannot operate on a scalar quantity. In addition, the following two properties follow for curl operation.

      (1.66)nabla x nabla upper T equals 0

      1.3.5 Divergence Theorem

      The divergence theorems states that the volume integral of the divergence of a vector is equal to the surface integral of the same vector enclosing that volume. It is mathematically given by

Schematic illustration of divergence theorem.

      Verify the divergence theorem for vector

      (1.68)upper T overbar equals x ModifyingAbove x With ampersand c period circ semicolon plus y ModifyingAbove y With ampersand </p>
						</div><hr>
						<div class= Скачать книгу