Abdullah Eroglu

RF/Microwave Engineering and Applications in Energy Systems


Скачать книгу

circ semicolon plus z ModifyingAbove z With ampersand c period circ semicolon"/>

      Solution

      (1.70a)normal d s overbar Subscript 1 Baseline equals minus ModifyingAbove z With ampersand c period circ semicolon italic dxdy

      (1.70b)normal d s overbar Subscript 2 Baseline equals minus ModifyingAbove y With ampersand c period circ semicolon italic dxdz

      (1.70c)normal d s overbar Subscript 3 Baseline equals minus ModifyingAbove x With ampersand c period circ semicolon italic dydz

      To be able to find the differential surface area vector normal d s overbar Subscript 4 for surface 4, we need to determine the normal vector for that surface. The normal vector can be found using the equation

Schematic illustration of geometry of Example 1.4.

      (1.73)upper C equals x plus upper A left-parenthesis 0 right-parenthesis plus upper B left-parenthesis 0 right-parenthesis right double arrow upper C equals a

      Similarly, from intercept point (0,b,0)

      (1.74)a equals left-parenthesis 0 right-parenthesis plus upper A left-parenthesis b right-parenthesis plus upper B left-parenthesis 0 right-parenthesis right double arrow upper A equals StartFraction a Over b EndFraction

      and from intercept point (0,0,c)

      (1.75)a equals x left-parenthesis 0 right-parenthesis plus upper A left-parenthesis 0 right-parenthesis plus upper B left-parenthesis c right-parenthesis right double arrow upper B equals StartFraction a Over c EndFraction

      Then, function f is defined by

      (1.77)ModifyingAbove n With ampersand c period circ semicolon equals StartFraction nabla f Over StartAbsoluteValue nabla f EndAbsoluteValue EndFraction equals StartStartFraction ModifyingAbove x With ampersand c period circ semicolon plus StartFraction a Over b EndFraction ModifyingAbove y With ampersand c period circ semicolon plus StartFraction a Over c EndFraction ModifyingAbove z With ampersand c period circ semicolon OverOver StartRoot 1 plus left-parenthesis StartFraction a Over b EndFraction right-parenthesis squared plus left-parenthesis StartFraction a Over c EndFraction right-parenthesis squared EndRoot EndEndFraction

      We can then calculate the surface area as

      where

      (1.80)normal d s overbar Subscript 4 Baseline equals ModifyingAbove n With ampersand c period circ semicolon StartFraction italic dxdy Over cosine alpha EndFraction equals italic dxdy StartFraction c Over a EndFraction left-parenthesis ModifyingAbove x With ampersand c period circ semicolon plus StartFraction a Over b EndFraction ModifyingAbove y With ampersand c period circ semicolon plus StartFraction a Over c EndFraction ModifyingAbove z With ampersand c period circ semicolon right-parenthesis

      Then,