Abdullah Eroglu

RF/Microwave Engineering and Applications in Energy Systems


Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_eabf8b52-95ff-5684-bdc5-8331ca507f3e.png" alt="contour-integral Underscript upper C Endscripts upper E overbar dot d l overbar equals minus integral Underscript upper S Endscripts StartFraction partial-differential upper B overbar Over partial-differential t EndFraction dot ModifyingAbove n With ampersand c period circ semicolon italic d upper S"/>

      As a note, it is assumed that the magnetic current source does not exist. Taking the volume integral of both sides over volume V and surface S gives

      (1.111)contour-integral Underscript upper S Endscripts upper B overbar dot ModifyingAbove n With ampersand c period circ semicolon italic d upper S equals 0

      In summary, the integral forms of Maxwell's equations are

      (1.112)contour-integral Underscript upper C Endscripts upper E overbar dot d l overbar equals minus integral Underscript upper S Endscripts StartFraction partial-differential upper B overbar Over partial-differential t EndFraction dot ModifyingAbove n With ampersand c period circ semicolon italic d upper S

      (1.113)contour-integral Underscript upper C Endscripts upper H overbar dot normal d l overbar equals i Subscript s Baseline plus integral Underscript upper S Endscripts StartFraction partial-differential upper D overbar Over partial-differential t EndFraction dot ModifyingAbove n With ampersand c period circ semicolon italic d upper S

      (1.114)contour-integral Underscript upper S Endscripts upper D overbar dot ModifyingAbove n With ampersand c period circ semicolon italic d upper S equals integral Underscript upper V Endscripts rho Subscript v Baseline italic d upper V

      (1.115)contour-integral Underscript upper S Endscripts upper B overbar dot ModifyingAbove n With ampersand c period circ semicolon italic d upper S equals 0

      Let's assume we have a sinusoidal function that changes in position and time. This function can be expressed as

      (1.118)upper F left-parenthesis r overbar right-parenthesis equals upper P left-parenthesis r overbar right-parenthesis e Superscript italic j phi left-parenthesis r overbar right-parenthesis

      This can be applied for vectorial function as

      (1.119)ModifyingAbove upper F With bar left-parenthesis r overbar right-parenthesis equals ModifyingAbove upper P With bar left-parenthesis r overbar right-parenthesis e Superscript italic j phi left-parenthesis r overbar right-parenthesis

      The representation of the time harmonic functions in phasor form provides several advantages. They convert the time domain differential equations to frequency domain algebraic equations. This can be better understood by studying the derivative property as follows. Let's take derivative function g(r,t) with respect to time as