Группа авторов

Analytical Methods for Environmental Contaminants of Emerging Concern


Скачать книгу

Kümmerer), 3–21. Berlin Heidelberg: Springer. doi: 10.1007/978-3-662-09259-0.

      3 3 Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: a review. Environ. Sci. Technol. 35(17): 3397–3406. doi: 10.1021/es0003021.

      4 4 Conde-Cid, M., Núñez-Delgado, A., Fernández-Sanjurjo, M.J., Álvarez-Rodríguez, E., Fernández-Calviño, D., and Arias-Estévez, M. (2020). Tetracycline and sulfonamide antibiotics in soils: presence, fate and environmental risks. Processes 8(11): 1–40. doi: 10.3390/pr8111479.

      5 5 Khan, N.A., Ahmed, S., Farooqi, I.H., Ali, I., Vambol, V., Changani, F., Yousefi, M., Vambol, S., Khan, S.U., and Khan, A.H. (2020). Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: a critical review. Trends Anal. Chem. 129: 115921. doi: 10.1016/j.trac.2020.115921.

      6 6 Wang, J., Chu, L., Wojnárovits, L., and Takács, E. (2020). Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total Environ. 744: 140997. doi: 10.1016/j.scitotenv.2020.140997.

      7 7 Gworek, B., Kijeńska, M., Zaborowska, M., Wrzosek, J., Tokarz, L., and Chmielewski, J. (2019). Pharmaceuticals in aquatic environment. Fate and behavior, ecotoxicology and risk assessment, a review. Acta Pol. Pharm. – Drug Res. 76(3): 397–407. doi: 10.32383/appdr/103368.

      8 8 Kovalakova, P., Cizmas, L., McDonald, T.J., Marsalek, B., Feng, M., and Sharma, V.K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: a review. Chemosphere 251: 126351. doi: 10.1016/j.chemosphere.2020.126351.

      9 9 Carvalho, I.T. and Santos, L. (2016). Antibiotics in the aquatic environments: a review of the European scenario. Environ. Int. 94: 736–757. doi: 10.1016/j.envint.2016.06.025.

      10 10 Kaczala, F. and Blum, E.S. (2015). The occurrence of veterinary pharmaceuticals in the environment: a review. Curr. Anal. Chem. 12(3): 169–182. doi: 10.2174/1573411012666151009193108.

      11 11 Escher, B.I. and Fenner, K. (2011). Recent advances in environmental risk assessment of transformation products. Environ. Sci. Technol. 45(9): 3835–3847. doi: 10.1021/es1030799.

      12 12 Evgenidou, E.N., Konstantinou, I.K., and Lambropoulou, D.A. (2015). Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: a review. Sci. Total Environ. 505: 905–926. doi: 10.1016/j.scitotenv.2014.10.021.

      13 13 Celiz, M., Tso, J.D., and Aga, D.S. (2009). Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ. Toxicol. Chem. 28(12): 2473–2484. doi: 10.1897/09-173.1.

      14 14 Yin, L., Wang, B., Yuan, H., Deng, S., Huang, J., Wang, Y., and Yu, G. (2017). Pay special attention to the transformation products of PPCPs in environment. Emerg. Contam. 3(2): 69–75. doi: 10.1016/j.emcon.2017.04.001.

      15 15 Besse, J.P., Latour, J.F., and Garric, J. (2012). Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs? Environ. Int. 39(1): 73–86. doi: 10.1016/j.envint.2011.10.002.

      16 16 Madikizela, L.M., Ncube, S., Tutu, H., Richards, H., Newman, B., Ndungu, K., and Chimuka, L. (2020). Pharmaceuticals and their metabolites in the marine environment: sources, analytical methods and occurrence. Trends Environ. Anal. Chem. 28: e00104. doi: 10.1016/j.teac.2020.e00104.

      17 17 Godoi, F.C., Prakash, S., and Bhandari, B.R., (2019). Final report The database “Pharmaceuticals in the Environment” – update and new analysis. Germany: German Environmental Agency, Umwelt Bundesamt, p. 103. Report No.: 67/2019.

      18 18 Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council.

      19 19 Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Comm.

      20 20 Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council.

      21 21 European Medicines Agency (2006). Guideline on the Environmental Risk Assessment of Medical Products for Human Use. London: European Medicines Agency. Report No.: EMEA/CHMP/SWP/4447/00.

      22 22 Guideline on the Environmental Risk Assessment for Veterinary Medicinal Products in Support of the VICH GL6 and GL 38. London: European Medicines Agency; 2008, 77 p. Report No.: EMEA/CVMP/ERA/418282/2005-Rev.1.

      23 23 Ankley, G.T., Brooks, B.W., Huggett, D.B., and Sumpter, J.P. (2007). Repeating history: Pharmaceuticals in the environment. Environ. Sci. Technol. 15: 8211–8217. doi: 10.1021/es072658j.

      24 24 Schmitt, H., Boucard, T., Garric, J., Jensen, J., Parrott, J., Péry, A., Rӧmbke, J., Straub, J.O., Hutchinson, T.H., Sanchez-Argüello, P., Wennmalm, A., and Duis, K. (2010). Recommendations on the environmental risk assessment of pharmaceuticals: Effect characterization. Integr. Environ. Assess. Manag. 6: 588–602. doi: 10.1897/IEAM_2009-053.1.

      25 25 Tarazona, J.V., Escher, B.I., Giltrow, E., Sumpter, J., and Knacker, T. (2010). Targeting the environmental risk assessment of pharmaceuticals: Facts and fantasies. Integr. Environ. Assess. Manag. 6: 603–613. doi: 10.1897/IEAM_2009-052.1.

      26