сигнал и от слияния двух нейтронных звезд. Строго говоря, в этом слиянии как минимум один объект точно является нейтронной звездой, а второй может быть нейтронной звездой или черной дырой. При слиянии двух черных дыр пространство-время возмущено сильно, поэтому наблюдение гравитационных волн от слияний черных дыр дало проверку Общей теории относительности в области сильных полей. К настоящему моменту зарегистрированы уже десятки всплесков гравитационных волн. Таким образом, удалось окончательно установить, что гравитационные волны действительно существуют.
Также ожидается, что мощные сигналы в форме гравитационных волн генерируется и во время взрывов сверхновых. В нашей Галактике примерно раз в 50 лет взрываются сверхновые, поэтому в обозримом будущем появится возможность наблюдать гравитационные волны и от таких взрывов.
Вселенная
Окружающее нас вещество распределено неоднородно, оно образует множество отдельных объектов и предметов – от атомов до сверхскоплений галактик. Но если мысленно переходить от малых ко все большим и большим масштабам, то мы перестанем видеть эти неоднородности. Точно так же мы не видим неровности штукатурки на стене дома, если отошли от стены достаточно далеко. На масштабах, превышающих размеры сверхскоплений галактик, Вселенная начнет выглядеть как однородная, имеющая во всех местах одинаковую плотность. С течением времени эта плотность уменьшается из-за расширения пространства. Вселенная расширяется!
Во времена Ньютона Вселенную в целом представляли, чем-то неподвижным и неизменным с момента ее создания. Неподвижно на своих местах располагались звезды. И только планеты обращались по орбитам вокруг Солнца (при Ньютоне гелиоцентрическая точка зрения уже получила распространение), и лишь на Земле в мелких по космическим меркам масштабах копошилась разнообразная жизнь. Дальний космос же был величественен и неподвижен. Интересно, что представление о неизменной Вселенной дожило до XX-го века: Эйнштейн тоже сначала считал Вселенную статической. Он разработал модель однородной, но не расширяющейся Вселенной. При этом ему пришлось ввести в свои уравнения гравитации искусственную добавку – космологическую постоянную, называемую также лямбда-членом. Иначе статическая неподвижная Вселенная из уравнений не получалась. А чуть позже А. Фридман, используя уравнения Эйнштейна, построил модель расширяющейся Вселенной. Оказалось, что совсем не обязательно требовать неподвижности. Расширение Вселенной было подтверждено Э. Хабблом в 1920-х годах при наблюдении разлета галактик. Для расширения Вселенной в согласии с имеющимися тогда данными лямбда-члена не требовалось. Лишь в 1990-х годах с увеличением точности наблюдений было установлено, что лямбда-член во Вселенной все-таки существует. Но не в форме новой фундаментальной константы, как предполагал Эйнштейн, а в виде темной энергии.
В каком бы месте мы ни находились, расширение