условно, так как бывает трудно отнести метод к той или иной группе. Физические и физико-химические методы называют еще инструментальными методами анализа, поскольку они требуют использования специальной аппаратуры. Кроме того, деление методов на химические и инструментальные осуществляют на основе типа взаимодействия: в химических методах – взаимодействие вещества с веществом, в инструментальных – вещества с энергией. В зависимости от вида энергии в веществе происходит изменение энергетического состояния составляющих его частиц (атомов, молекул, ионов); при этом меняется физическое свойство, которое может быть использовано в качестве аналитического сигнала.
Физико-химические методы анализа стали применять позднее, чем химические методы анализа, когда была установлена и изучена связь между физическими свойствами веществ и их составом.
Химические методы анализа иначе называют классическими, а физические и физико-химические методы анализа – инструментальными, т. к., проведение анализа с привлечением этих методов невозможно без использования измерительной аппаратуры.
Применяемые в настоящее время инструментальные методы исследования состава и свойств пищевых продуктов основываются на использовании физических, химических, биохимических и других эффектов взаимодействия исследуемого объекта с первичными преобразователями (датчиками). Сигналы от датчиков воспринимаются вторичными приборами и преобразуются в информацию (табл. 2.3.)
Таблица 2.3.
Классификация инструментальных методов исследования состава и свойств вещества
По способам определения различают прямые и косвенные методы анализа. В прямых методах количество вещества находят непосредственным пересчётом измеренного аналитического сигнала в количество вещества (массу, концентрацию) с помощью уравнения связи. В косвенных методах аналитический сигнал используется для установления конца химической реакции (как своеобразный индикатор), а количество определяемого вещества, вступившего в реакцию, находят с помощью закона эквивалентов, т.е. по уравнению, непосредственно не связанному с названием метода.
По способу количественных определений различают безэталонные и эталонные инструментальные методы анализа.
Безэталонные методы основаны на строгих закономерностях, формульное выражение которых позволяет пересчитать интенсивность измеренного аналитического сигнала непосредственно в количестве определяемого вещества с привлечением только табличных величин. В качестве такой закономерности может выступать, например, закон Фарадея, позволяющий по току и времени электролиза рассчитать количество определяемого вещества в растворе при кулонометрическом титровании. Безэталонных методов очень мало, поскольку каждое аналитическое