TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/
686
Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53(39):10316–29. https://pubmed.ncbi.nlm.nih.gov/25044982/
687
Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by processed animal feed: the role of Maillard reaction products and advanced glycation end-products (AGEs). Front Immunol. 2018;9:2088. https://pubmed.ncbi.nlm.nih.gov/30271411/
688
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/
689
Unnikrishnan R, Anjana RM, Mohan V. Drugs affecting HbA1c levels. Indian J Endocrinol Metab. 2012;16(4):528–31. https://pubmed.ncbi.nlm.nih.gov/22837911/
690
American Diabetes Association. Understanding A1C. American Diabetes Association website. https://www.diabetes.org/a1c. Accessed June 2, 2021.; https://www.diabetes.org/a1c
691
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/
692
Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275(50):39027–31. https://pubmed.ncbi.nlm.nih.gov/10976109/
693
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/
694
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
695
Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/
696
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/
697
Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018;15(1):72. https://pubmed.ncbi.nlm.nih.gov/30337945/
698
Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced glycation end products and risks for chronic diseases: intervening through lifestyle modification. Am J Lifestyle Med. 2019;13(4):384–404. https://pubmed.ncbi.nlm.nih.gov/31285723/
699
Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/
700
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
701
Sergi D, Boulestin H, Campbell FM, Williams LM. The role of dietary advanced glycation end products in metabolic dysfunction. Mol Nutr Food Res. 2021;65(1):1900934. https://pubmed.ncbi.nlm.nih.gov/32246887/
702
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/
703
. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/
704
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/
705
Azman KF, Zakaria R. D-galactose-induced accelerated aging model: an overview. Biogerontology. 2019;20(6):763–82. https://pubmed.ncbi.nlm.nih.gov/31538262/
706
Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/
707
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/
708
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://pubmed.ncbi.nlm.nih.gov/30968282/
709
Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/
710
Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://pubmed.ncbi.nlm.nih.gov/30968282/
711
Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://pubmed.ncbi.nlm.nih.gov/31861217/
712
Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53(39):10316–29. https://pubmed.ncbi.nlm.nih.gov/25044982/
713
Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/
714
Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018;15(1):72. https://pubmed.ncbi.nlm.nih.gov/30337945/