J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
744
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
745
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
746
Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://pubmed.ncbi.nlm.nih.gov/33568752/
747
Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/
748
Davis KE, Prasad C, Vijayagopal P, Juma S, Adams-Huet B, Imrhan V. Contribution of dietary advanced glycation end products (AGE) to circulating AGE: role of dietary fat. Br J Nutr. 2015;114(11):1797–806. https://pubmed.ncbi.nlm.nih.gov/26392152/
749
Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/
750
Senolt L, Braun M, Olejarova M, Forejtova S, Gatterova J, Pavelka K. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64(6):886–90. https://pubmed.ncbi.nlm.nih.gov/15897309/
751
Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology (Oxford). 2003;42(10):1242–6. https://pubmed.ncbi.nlm.nih.gov/12777635/
752
Meerwaldt R, Graaff R, Oomen PHN, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47(7):1324–30. https://pubmed.ncbi.nlm.nih.gov/15243705/
753
Mahmoudi R, Jaisson S, Badr S, et al. Post-translational modification-derived products are associated with frailty status in elderly subjects. Clin Chem Lab Med. 2019;57(8):1153–61. https://pubmed.ncbi.nlm.nih.gov/30817296/
754
Cavero-Redondo I, Soriano-Cano A, Álvarez-Bueno C, et al. Skin autofluorescence – indicated advanced glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(18):e009833. https://pubmed.ncbi.nlm.nih.gov/30371199/
755
Igase M, Ohara M, Igase K, et al. Skin autofluorescence examination as a diagnostic tool for mild cognitive impairment in healthy people. J Alzheimers Dis. 2017;55(4):1481–7. https://pubmed.ncbi.nlm.nih.gov/27858716/
756
Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/
757
Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/
758
Cao GY, Li M, Han L, et al. Dietary fat intake and cognitive function among older populations: a systematic review and meta-analysis. J Prev Alzheimers Dis. 2019;6(3):204–11. https://pubmed.ncbi.nlm.nih.gov/31062836/
759
Holloway CJ, Cochlin LE, Emmanuel Y, et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am J Clin Nutr. 2011;93(4):748–55. https://pubmed.ncbi.nlm.nih.gov/21270386/
760
Cai W, He JC, Zhu L, et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170(6):1893–902. https://pubmed.ncbi.nlm.nih.gov/17525257/
761
Akhter F, Chen D, Akhter A, et al. High dietary advanced glycation end products impair mitochondrial and cognitive function. J Alzheimers Dis. 2020;76(1):165–78. https://pubmed.ncbi.nlm.nih.gov/32444539/
762
Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8. https://pubmed.ncbi.nlm.nih.gov/12765955/
763
Tsakiri EN, Iliaki KK, Höhn A, et al. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med. 2013;65:1155–63. https://pubmed.ncbi.nlm.nih.gov/23999505/
764
Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8. https://pubmed.ncbi.nlm.nih.gov/12765955/
765
Cai W, He JC, Zhu L, et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol. 2008;173(2):327–36. https://pubmed.ncbi.nlm.nih.gov/18599606/
766
Negrean M, Stirban A, Stratmann B, et al. Effects of low- and high-advanced glycation endproduct meals on macro-and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85(5):1236–43. https://pubmed.ncbi.nlm.nih.gov/17490958/
767
. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/
768
. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/
769
Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/
770
Gaesser GA, Rodriguez J, Patrie JT, Whisner CM, Angadi SS. Effects of glycemic