только входные и производные от них сигналы. Здесь за основу взяты принципы самоорганизации нервных клеток. Для обучения без учителя не нужно знания требуемых ответов на каждый пример обучающей выборки. В этом случае происходит распределение образцов по категориям (кластерам) в соответствии с внутренней структурой данных или степенью корреляции между образцами.
Рассматривают также и смешанное обучение, при котором весовые коэффициенты одной группы нейронов настраиваются посредством обучения с учителем, а другой группы – на основе самообучения.
Основные правила обучения нейронных сетей
Известны четыре основных правила обучения, обусловленные связанными с ними архитектурами сетей: коррекция ошибки, правило Больцмана, правило Хебба и метод соревнования.
Коррекция ошибки
Для каждого входного примера задан требуемый выход, который может не совпадать с реальным. Правило обучения при коррекции по ошибке состоит в использовании разницы для изменения весов, с целью уменьшения ошибки рассогласования. Обучение производится только в случае ошибочного результата. Известны многочисленные модификации этого правила обучения.
Правило Больцмана
Правило Больцмана является стохастическим правилом обучения, обусловленным аналогией с термодинамическими принципами. В результате его выполнения осуществляется настройка весовых коэффициентов нейронов в соответствии с требуемым распределением вероятностей. Обучение правилу Больцмана может рассматриваться как отдельный случай коррекции по ошибке, в котором под ошибкой понимается расхождение корреляций состояний в двух режимах.
Правило Хебба
Правило Хебба является самым известным алгоритмом обучения нейронных сетей, суть которого заключается в следующем: если нейроны с обеих сторон синапса возбуждаются одновременно и регулярно, то сила синаптической связи возрастает. Важной особенностью является то, что изменение синаптического веса зависит только от активности связанных этим синапсом нейронов. Предложено большое количество разновидностей этого правила, различающихся особенностями модификации синаптических весов.
Метод соревнования
В отличие от правила Хебба, в котором множество выходных нейронов могут возбуждаться одновременно, здесь выходные нейроны соревнуются между собой. И выходной нейрон с максимальным значением взвешенной суммы является «победителем» («победитель забирает все»). Выходы же остальных выходных нейронов устанавливаются в неактивное состояние. При обучении модифицируются только веса нейрона-«победителя» в сторону увеличения близости к данному входному примеру.
Алгоритмы обучения с учителем
Алгоритмы обучения нейронной сети с учителем подразумевают наличие некоего внешнего звена, предоставляющего сети кроме входных так же и целевые выходные образы. Алгоритмы, пользующиеся подобной концепцией, называются алгоритмами обучения с учителем. Для их успешного функционирования необходимо