Инесса Раскина

Логика для всех. От пиратов до мудрецов


Скачать книгу

четное.

      3) Если натуральное число делится на 3, то оно делится и на 5.

      Ответ. 1) Обратное утверждение: если натуральное число четное, то его последняя цифра – 0, 2, 4, 6 или 8. Оба высказывания истинны.

      2) Данное высказывание истинно. Обратное – если натуральное число четное, то оно делится без остатка на 6 – ложно.

      3) Ложно и данное высказывание, и обратное ему: если число делится на 3, то оно делится и на 5.

      Задача 5.3. «Вырежем» из составного высказывания задачи 5.2 (п. 2) простые высказывания. А: «Число делится на 6», Б: «Число четное». Как мы убедились, для них высказывание «А ⇒ Б» истинно, а обратное ему высказывание «Б ⇒ А» – ложно. Приведите другие примеры высказываний А и Б с тем же свойством.

      Обсуждение. Таких пар высказываний сколько угодно. Их можно условно разделить на два типа. Во-первых, высказывания А и Б могут быть связаны между собой по смыслу так, что из А действительно принято делать вывод Б (но не наоборот). Например:

      А: Карл украл у Клары кораллы.

      Б: Карл – вор.

      Очевидно, что из А следует Б. А вот из того, что Карл – вор, еще не следует, что именно он украл кораллы.

      Во-вторых, А может быть заведомо ложным высказыванием, а Б – истинным, при этом смысловая связь между А и Б может вообще отсутствовать. Например,

      А: Новый год отмечается 31 июня.

      Б: Волга впадает в Каспийское море.

      Последний пример звучит непривычно. Но с точки зрения формальной логики высказывание «Если Новый год отмечается 31 июня, то Волга впадает в Каспийское море» истинно так же, как и «Если Карл украл у Клары кораллы, то Карл – вор». Убедиться в этом можно с помощью таблицы истинности.

      Задача 5.4. Будем считать истинной пословицу «Кто не работает, тот и не ест».

      1) Известно, что Иван ест. Обязательно ли он работает?

      2) Известно, что Семен работает. Обязательно ли он ест?

      Ответ. 1) Да; 2) нет.

      Решение 1. 1) Высказывание «Если Иван не работает, то Иван не ест» истинно, а его вторая часть «Иван не ест» ложна. В соответствии с таблицей истинности такое возможно, только если первая часть «Иван не работает» тоже ложна. Следовательно, Иван работает. 2) Высказывание «Если Семен не работает, то Семен не ест» истинно, а его первая часть «Семен не работает» ложна. В соответствии с таблицей истинности такое возможно независимо от истинности второй части, т. е. от того, ест ли Семен.

      Решение 2. На рисунке 9 серым выделена область истинности пословицы. Поэтому в белой части 1 никого нет. Иван может находиться только в части 4 (т. е. он и работает, и ест). Семен может находиться как в части 3 (тогда он работает, но не ест), так и в части 4 (и тогда он работает и ест).

      Рис. 9

      Решение 3. 1) Предположим, что Иван не работает. Тогда он не работает, но ест, и поэтому служит контрпримером к пословице. Пришли к противоречию с условием, значит, предположение неверно, и Иван работает. Заметим, что аналогичное «решение» для пункта 2 неубедительно, так как если мы не нашли противоречия, это еще не значит, что его нет.

      Задача 5.5. Верно ли высказывание «Если человек допрыгнет