Варвара Анченко

Мода, стиль и управление персоналом


Скачать книгу

что множественное число образуется несколько иначе. Я это приняла к сведению, но, с вашего позволения, продолжу писать, как писала.

      5

      Теоретически не посоветует

      6

      Формула расчета годового бонуса. В принципе, это поле свободно для заполнения статистической или инсайдерской информацией

/9j/4AAQSkZJRgABAQABLAEsAAD/4gxYSUNDX1BST0ZJTEUAAQEAAAxITGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAACBAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRkAAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENvcHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxYWVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAAGNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdCIGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVmZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQAAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3VydgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQByAHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEBBwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJAdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQgBC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUFxQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQesB78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyODKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oPlg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLjEwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8WshbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrFGuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4faR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRNJHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+RL8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTykPOM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BEA0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0uaS+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyGXNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl553pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSAhOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56QBpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuvnByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+CoUqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUTtYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC60TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynfr+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO6070DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+3P9t////2wBDAAMCAgICAgMCAgIDAwMDBAYEBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/wAALCADtAk8BAREA/8QAHQABAAICAwEBAAAAAAAAAAAAAAcIBQYBBAkCA//EAFwQAAAFBAECAwQDCAkPCAsAAAABAgMEBQYHERIIIRMxQQkUIlEVMmEWOHF1doGRsyMzOUJicneWtBcYGTU2UnN0gpKhsbK10SY3VVhZY5PSJCU0Q1NXg5Wkw9P/2gAIAQEAAD8A9UwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY+LXqNNrE6gRaiy7UaYhl2XGSr42UOko21KL5K4K1/FMZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY6tXDRLcbiO1ypMwkTpjMCMbp68WQ6ri22X8JR9iGRAAAAAAAAAAAAAAAAARFhsl1bJmYLsNaltOXHFokdS9GZIhQWSWlPqSSded7eW9n6mJdAAGl5Sv56wqVSTp0JM2rV+twaJToyj7LcfdIlrV33xbaS64evRA3QAAAAAAAAAAaXWr+eoWVLbsOdEbRBuenTnIUsz+JU2MbazY8/VlTiy7f+7V8hugAAAAAAAAAAAAAAAIe6rmyj4clXMakF9ytXpNwnyIj2mLOZcWXc+3wEruJgSolJJRH2MtkOQAAAAAAAAAAAAAAAcKUSSNSj0RFszMRH0tspfxWq5jQrxbpr1Zrrrii0bvjznjQvWz7G2TevsIhLoAAha55bd29VNnWmTqVR7JtyfdEhvRKL3qStMONy/vTJs5Rkfn3MTSAAAAAj/qAyJVsSYUvXJdBo30rUbco0ifGiaMyccQntyIu/Ej+I9ehGILRljM1gVjAtTrGQ2L3h5cms0+q0xNLjMFDN6GcgpMRbKSX4bRlpROGvsZdyMW0AAABCvVbKdtqxaDk+MlfjWHdNLrLikmZEURT3u0vkZFvh7vJdMy9eJCaUqStJLSeyUWyP7ByAAAAAAOFKShJrWokpSWzMz0REMRaN10e+Ldh3Vb7rjtNqBLXGdW2aPFbJZpJZEffirjySfqkyP1GYAAAAAYVy7qIzeDNjPyFN1aVT11OO2tBkl5hDhNucFeRqSa0ck+ZEtJ+RjNANOzJbS7yxLedqNNJcdq1BnxGkqPReIthZI799fEZHsfOGLjRd+I7MudHif+sqFBkKJwtLJZsp5Ef28tjcwAAAAAAAAAAAAAAAaxlGvnauNLsuZJpJVKok6ak1H222wtRb19pDH4QtwrRw7ZNtEpalU+gwWVqWXxGsmU8jPsX74z9Bu4AAr5heUm5uqXPNzJNK26OqgWq0r5eDEXJcIv8uWZH9qfsIWDAAAAAQb1r3JkC1Omu76xjZp9VVSyy0+7HZ8V2PCW6lEl1CdHs0tKWfkeu5+gr7ky3cL4vPDdw9KFUhzb4K46dSqfEp9VXUFTKPIPU4nmTWsm2/DLmpek8TLzLyF9AAAARr1LW8V19PmRqDozVJtmomgiIjM1pYWtJd+31kkMrhK6vu4w7ZF3nIN5dXt+BLdcMyM1OLYQa9mXry5DdQAAAAABEnVJdVTtvEM6mW+483W7umw7Upa2frtyJ7yWPEI/Q0IU4sj9DSQkygUSBbVDp1u0pomoVMitQ46C/ettoJKS/QRDvgAAA/J6TGjqbQ/IbbU8rg2S1kRrV8i35n9hD9RC3Uw4i0YVnZobM0LsS44qpikkZqXTZqyhykaLueiebc15baIz8hNIqlK6pc01Cn5inWjjq1n4WJqlMiuVioVF5iHNRGjk8422lKVLN74iT6II/M++hYHF94qybjC2b6lUhdNO5qPGqK4S1cjZ8Zol8N+pfF5/IaV0of8AoWG4tqrd5PWnVqtb7iNaNko055DaDL0014Z/gMhMIAAAAAAAAAAAAAAAIh6rUrnYTqtss8SduedTaAg1H8Kfe5rLSjPRkZkSVK7EYlxtCWm0toSRJQRJIiLRERD6GrZHyhj/ABFbbl35JuuBQKS2tLXvEtZlzcPyQhJEalqP0SkjP7BjcSZ0xJnejSK/iS+qdckKI6TMlUY1JWwsy2SXG1klaNl5bIt+g3sVq6KpCa8vNN7p0Sa3lKsoQRb1wjk0ynzIvRPmLKgAAAAOFJSpJpURGRloyPyMhiaZaNp0SW5UKNbFJgSnd+I/FhNNOL357UlJGYy4AAAOhXqdGq9DqNJmNk5HmxHo7qD/AHyFoNKi/QZiDegipyKl0lY+alpMnqZCepa9q5bONIcZ3v5fALAgAAAAACv2c5h17qOwPjttbK22qhVrrlsrSZ7TDhm00fkZftknZfakj2WhYEAAAGOuFuvu0Oa1a0iDHq62VJhuzm1OMNun5KWlBkpRF56Iy38x5u5ktXIFle0P6d4F8Zerl6P1iU5UHUSW0RYMRxPiIJMaM38Ladb7malH6qMemYjvqKthV54HyBbDaUG7Pt2ehk1+SXSZUptXkejJRJMj12MiHbwXd/3f4Wsa9iUSlVu3oE1f8dbCDUR/aStkf2ivqenbMUbo5yVjKPFpqsg5CqtZqUhJzkkwRzphq14utfCxovLzLQtBZNLOhWdQ6GcBUL6Np0eGUZTiVm0TbaUEnkn4T0SfMuwjnByXqRkDMdpuK23Hu1FXY358J0Fh1X5vES7+gxMIAAAAAAAAAAAAAAAIhzog61eGJLOQtR+/XgmqPtkekrYgxH3z5fMicJk/w6EvAKKM3yecfaU3LjOouOFSsbWVJh0xtxJLbj1GQTJuzEoV8JuEl5KUmfkSftMbd0JdDdf6R6xfNeuXIbFxybqdabZRFZW22hlta1E44SvN1Rr767EReZ7Fu1qJCFLV5JIzMVf9nXLkVLBNZq8jxD+kL7uSS2tadGtBzl6P/Rr8wtEAAADgyIy0fqPOr2nHTTjWwenuqZixwxUrYuGk1SGbzkGqSvDmNyHybWhaFOGkj24SyURb+HXkYj72dXSPjTqUwDIyHlC4L4kVhq4ZdOSuHcsmO34LbTKklxI9b24ruLQ/2MXpu/6WyN/O+V/xEa9SvQDg7F+AMg5EtStX+3WLdt+ZUYK37rlONpebbNSTUkz0otl5Cv3snsI2p1AO33deXZlZuJu23IMWDBfqspDJLeS6pTiiQ4nkemyIiPZdx65UGhUm2KLCt6hQ0xKfT2Ux4zCVKUTbaS0RbUZmf5zHfAB8uJ5tqQf74jIVh9nTISnp8m0EkqQdAvS5KYaFb5I41F1ZJVv1InC8haAAAAAAAVqkqK4faGQmDJ5KLRxc88R6+BTsuoIT5/xUH+gWVAAAAHn51cfulHTH/g3v1jg9Ax1qnBbqlNl0x5RpblsOMKMvMiUk0n/rFf8AoBqztQ6WrWpshpxD1vyKjRF8y0Z+7TXkF2/ikkvzCxICG6RwonVpcMMzL/lTY8CoI0ky+KFMeZXs/XtKa/B+cd3qWylfOFsXVbJ1n2xQq3Ht6K9PqbFUqbsIyYQkjLwjQ05yWZ9tHovLuIbwZ1M9WnUDjSmZWsnp/wAfxqLV1PFFTUr0ksvqJpxTalcUwlERGpCtd/Qb3hLO+Y7yzPdeHMt4notqy7aosOsFKpdcXUWpBSHFJQkjUy3rshZn69hYAAAAAAAAAAAAAAERV0jrfVLacFaEuM2xaFUqey3tp+XJjsIMz36oaeLRl8zEugPKToqrsib7VXNCVNpJMldxNq2ZqMvBnNITo/t0PVsdSqqNNLmKSZkZR3DIy9PhMVo9mrFeY6R7bkvPeIqdVK1J2e996i+k9n6ntJn+cWiFLeoDrYzd0/5itPFlw4bs96NfMv3eiVk7lkIj6N4mi8cvdTNtRc0GZFyL4i0ZiV+pPPmQcBYuod3xLOtyu3JUpjFNVQSqr7a5kx4yJDMIyZUp5W9mfJKCJJGZmQkfFlVyxWaCc/LlpUC3Kk7wU1CpNUcnEhJp2onFrabIlEfbSSMvtG6AAqB7V/7yW7/xhSf6c0NT9jb96RM/K+ofqIwvWIT62PvR8u/kjUv1KhS32HX9yeWvxjSP1UkenwAACrvs/wBBR7DyZT1LSp6HlW523eO9EpUhLhFs/P4VpFohwRkotpMj/AORTiVmjOFl+0Fs7pzquQ2a/Z1zW9LrrrT1GjR32VEiWaGicbSRmSTjoPfmez2JS6qOom7+nuBaEu0sOVm/lXJWk0ySi